JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

news/2024/12/14 4:15:50/

BiLSTM_0">JCR一区牛顿-拉夫逊优化算法+分解对比!VMD-NRBO-Transformer-BiLSTM多变量时序光伏功率预测

目录

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.中科院一区牛顿-拉夫逊优化优化算法+分解组合对比!VMD-NRBO-Transformer-BiLSTM多变量时间序列光伏功率预测,变分模态分解+牛顿-拉夫逊优化算法Transformer结合双向长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);
牛顿-拉夫逊优化算法算法(Newton-Raphson-based optimizer,NRBO)是一种全新的元启发式优化方法,其灵感来源主要基于两个关键原理:Newton-Raphson搜索规则(NRSR)和陷阱避免算子(TAO)。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到改进的搜索空间位置。TAO有助于NRBO避免局部最优陷阱。NRBO具有进化能力强、搜索速度快、寻优能力强的特点。这一成果由Sowmya等人于2024年2月发表在中科院2区顶级SCI期刊《Engineering Applications of Artificial Intelligence》上。。
2.算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;
3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
先运行main1VMD,进行vmd分解;再运行main2NRBOTransformerBiLSTM,四个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。

在这里插入图片描述
在这里插入图片描述

程序设计

X = xlsread('北半球光伏数据.xlsx','C2:E296');save origin_data XL=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);%  重构数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501


http://www.ppmy.cn/news/1554929.html

相关文章

mysql 架构详解

MySQL的架构可以自顶向下分为多个层次,每个层次都有其特定的功能和组件。以下是对MySQL架构的详细解析: 一、整体架构概述 MySQL的整体架构包括MySQL Connectors(连接器)、MySQL Shell、连接层、服务层、存储引擎层和文件系统层…

springboot jenkins job error console log

背景 automation test springboot 测试服务 接口返回的 内容是封装过的 jenkins job 只是通过python request 去发送测试请求去测试 jenkins console 里只会有该http 接口response 的 返回信息比如 { response_code: “13000”, response_message: “Failed by …”, label:“…

新手上路,学Go还是Python

选择学习Go语言还是Python取决于你的学习目标和兴趣。以下是两种语言的一些特点,可以帮助你做出决定: Python 1. 易学易用:Python以其简洁明了的语法而闻名,非常适合初学者。 2. 广泛的应用:Python在数据科学、机器学…

MySQL(库的操作)

目录 1. 创建数据库 2. 删除数据库 3. 查看数据库 4. 修改数据库 5. 备份和恢复 6. 查看连接情况 1. 创建数据库 CREATE DATABASE [IF NOT EXISTS] db_name [create_specification [, create_specification] ...] 1. 大写的是关键字 2. [ ]可带可不带 3. db_name 数据…

康耐视智能相机(Insight)通过ModbusTCP发送字符串到倍福(BECKHOFF)PLC中

文章目录 1.背景2.分析3.实现3.1.PLC的ModbusTCP_Server3.1.1.安装TF6250-Modbus-TCP3.1.2.PLC设置 3.2.智能相机的ModbusTCP_Client3.2.1.了解ModbusTCP的协议3.2.2.根据协议写代码3.2.2.1.纯函数代码3.2.2.2.脚本代码 3.2.3.非脚本处理时的代码逻辑图3.2.4.关于代码的问题及解…

redis 怎么样查看list

在 Redis 中,可以通过以下方法查看列表的内容或属性: 1. 查看列表中的所有元素 使用 LRANGE 命令: LRANGE key start endkey 是列表的名称。start 是起始索引,0 表示第一个元素。end 是结束索引,-1 表示最后一个元素…

springboot412笔记记录分享网站-(论文+源码)_kaic

摘 要 信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲,遇到了互联网时代才发现能补上自…

【聊天室后端服务器开发】消息存储子服务

概述 主要功能 存储消息(按照不同消息类型进行划分) 消息元信息存储到mysql数据库中,主要用于获取最近消息以及获取指定时间段的消息文本消息的元信息存储到ES搜索引擎中,可以进行关键字的消息搜索图片、语音、文件消息都通过文件…