1.环境、模型准备
1.1 配置基础环境
安装python依赖包
pip install einops==0.7.0 protobuf==5.26.1
1.2 安装Llamaindex
pip install llama-index==0.11.20
pip install llama-index-llms-replicate==0.3.0
pip install llama-index-llms-openai-like==0.2.0
pip install llama-index-embeddings-huggingface==0.3.1
pip install llama-index-embeddings-instructor==0.2.1
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121
1.3 下载Sentence Transformer模型
cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
打开download_hf.py
python">import os# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
在 /root/llamaindex_demo 目录下执行该脚本即可自动开始下载
cd /root/llamaindex_demo
conda activate llamaindex
python download_hf.py
推荐用户从modelscope下载
git lfs install
cd /root/model/
git clone https://www.modelscope.cn/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2.git
mv paraphrase-multilingual-MiniLM-L12-v2 sentence-transformer
1.4 下载NLTK相关资源
cd /root
git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
cd nltk_data
mv packages/* ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip
2.是否使用LlamaIndex前后对比
2.1 不使用LlamaIndex RAG(仅API)
cd ~/llamaindex_demo
touch test_internlm.py
打开test_internlm.py
python">from openai import OpenAIbase_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
api_key = "sk-请填写准确的 token!"
model="internlm2.5-latest"# base_url = "https://api.siliconflow.cn/v1"
# api_key = "sk-请填写准确的 token!"
# model="internlm/internlm2_5-7b-chat"client = OpenAI(api_key=api_key , base_url=base_url,
)chat_rsp = client.chat.completions.create(model=model,messages=[{"role": "user", "content": "xtuner是什么?"}],
)for choice in chat_rsp.choices:print(choice.message.content)
运行
cd ~/llamaindex_demo/
python test_internlm.py
从图中可知,得到的回答并不是所想要的。
2.2 使用API+LlamaIndex
获取知识库
cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
新建一个python文件
cd ~/llamaindex_demo
touch llamaindex_RAG.py
llamaindex_RAG.py文件代码如下:
python">import os
os.environ['NLTK_DATA'] = '/root/nltk_data'from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.settings import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike# Create an instance of CallbackManager
callback_manager = CallbackManager()api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "请填写 API Key"# api_base_url = "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model#初始化llm
Settings.llm = llm#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")print(response)
运行
cd ~/llamaindex_demo/
python llamaindex_RAG.py
结果如图所示
由上图可以看出,回答是准确的
3.LlamaIndex Web
pip install streamlit==1.39.0
新建python文件
cd ~/llamaindex_demo
touch app.py
app.py代码如下
python">import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike# Create an instance of CallbackManager
callback_manager = CallbackManager()api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = "请填写 API Key"# api_base_url = "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")# 初始化模型
@st.cache_resource
def init_models():embed_model = HuggingFaceEmbedding(model_name="/root/model/sentence-transformer")Settings.embed_model = embed_model#用初始化llmSettings.llm = llmdocuments = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()index = VectorStoreIndex.from_documents(documents)query_engine = index.as_query_engine()return query_engine# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:st.session_state['query_engine'] = init_models()def greet2(question):response = st.session_state['query_engine'].query(question)return response# Store LLM generated responses
if "messages" not in st.session_state.keys():st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}] # Display or clear chat messages
for message in st.session_state.messages:with st.chat_message(message["role"]):st.write(message["content"])def clear_chat_history():st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]st.sidebar.button('Clear Chat History', on_click=clear_chat_history)# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):return greet2(prompt_input)# User-provided prompt
if prompt := st.chat_input():st.session_state.messages.append({"role": "user", "content": prompt})with st.chat_message("user"):st.write(prompt)# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":with st.chat_message("assistant"):with st.spinner("Thinking..."):response = generate_llama_index_response(prompt)placeholder = st.empty()placeholder.markdown(response)message = {"role": "assistant", "content": response}st.session_state.messages.append(message)
运行
streamlit run app.py
结果如图所示