MATLAB神经网络(五)——R-CNN视觉检测

news/2024/12/4 10:07:15/

5.1 目标分类、检测与分割

        在计算机视觉领域,目标分类、检测与分割是常用计数。三者的联系与区分又在哪呢?目标分类是解决图像中的物体是什么的问题;目标检测是解决图像中的物体是什么,在哪里的问题;目标分割时将目标和背景分离出来,找出目标的轮廓线。

        衡量目标检测性能优劣的指标一方面要体现分类特性(准确度、精确率、召回率),另一方面要体现其定位特征,对于定位特征,通常用IoU来评价。交并比用来计算两个边界框交集和并集和并集之比,它衡量了两个边界框的重叠程度,如果重叠程度越高,检测越准确

5.2 R-CNN目标检测算法原理与实现

        R-CNN利用候选区域+卷积神经网络的方法,解决了图像中的定位问题,对于小规模数据集的问题,R-CNN利用AlexNet在ImageNet上预训练好的模型,基于迁移学习的原理,对参数进行微调。

     

        第一步:首先会有很多候选框区域,这些区域是由图像分割的方法得到的原始区域然后进行合并,得到的一个层次化的区域,这些区域内就可能存在需要的内容

        第二步:因为使用的为AlexNet,上一章我们很详细的说明了。将我们的候选区域压缩到  227*227,输入到神经网络中获得4096维的矩阵,每个候选区域都有一个矩阵。

        第三步:判断类别,候选框个数*4096特征与20哥SVM支持向量机组成的全职矩阵 4096*20,获得  2000 * 20维矩阵,分别对上述2000×20维矩阵中每一列即每一类进行非极大值抑制剔除重叠建议框,得到该列即该类中得分最高的一些建议框。

         SVM是线性分类器,相当于绘出一条线,让两组不同的数据距离他的距离最远。

        最后修正这个框,得到得分最高的框

  基于上面的过程,下面给出步骤:

        首先通过Image Labeler App构建R-CNN目标检测器,并导入图片

        并利用标签对图像进行标志

        标签完成后导出到工作空间内

trainingdate=objectDetectorTrainingData(gTruth);

        objectDetectorTrainingData函数可以将我们上面导出的图片转换为用于训练的数据,就可以导入网络进行使用了,给出完整代码如下:

%%  进行数据类型的转化
trainingdate=objectDetectorTrainingData(gTruth);
%%  导入网络
net=alexnet;
%%  设置训练策略参数并进行训练
% 设置训练策略参数
options = trainingOptions('sgdm', ...'MiniBatchSize', 128, ...'InitialLearnRate', 1e-3, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropFactor', 0.1, ...'LearnRateDropPeriod', 100, ...'MaxEpochs',10, ...'Verbose', true);% 训练网络.rcnn = trainRCNNObjectDetector(trainingdate, net, options, ...'NegativeOverlapRange', [0 0.3], 'PositiveOverlapRange',[0.5 1]) ;%%  显示测试结果
% 读取数据
I = imread('E:\MATLAB_DeepLearning\chapter_9\stop_sign_ch\slowtest.jpg');
% 用检测器测试
[bboxes,scores] = detect(rcnn,I);
% 标注测试结果并显示
I = insertObjectAnnotation(I,'rectangle',bboxes,scores);
figure
imshow(I)

效果如下:

111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           


http://www.ppmy.cn/news/1552245.html

相关文章

稳定运行的以SQL Server数据库为数据源和目标的ETL性能变差时提高性能方法和步骤

在使用SQL Server作为数据源和目标的ETL(Extract, Transform, Load)过程中,当系统的性能变差时,可能是因为数据量增加、查询优化不当、硬件资源不足等原因。 提高ETL性能的关键在于数据处理的各个环节,包括SQL优化、硬…

GD库如何根据颜色生成纯色背景图

GD库是一个用于图像处理的PHP扩展模块,它提供了一系列函数来创建、编辑和操作图像。要使用GD库根据颜色生成纯色背景图,可以按照以下步骤进行: 一、检查并安装GD库 检查GD库是否已安装: 可以通过运行phpinfo();或在命令行中使用p…

[Redis#14] 持久化 | RDB | bgsave | check-rdb | 灾备

目录 0.概述 持久化的策略 1 RDB 1.1 触发机制 1.2 流程说明 1.3 RDB 的优缺点 0.概述 在学习 MySQL 数据库时,我们了解到事务的四个核心特性:原子性、一致性、持久性和隔离性。这些特性确保了数据库操作的安全性和可靠性。当我们转向 Redis 时&a…

最新AI自动无人智享直播系统 —— 视频自动播软件热门之选

在当今数字化浪潮汹涌澎湃的时代,直播行业正经历着前所未有的变革与创新。而最新的 AI 自动无人智享直播系统,无疑成为了视频自动播软件中的热门之选,正引领着直播领域迈向新的高度。 这款 AI 自动无人智享直播系统,其核心优势在于…

阿里云DDoS反追踪:守护网络安全的最后一道防线

大家好,今天我们来聊一聊一个非常关键的网络安全话题——DDoS攻击与反追踪技术。在当今互联网环境下,DDoS(分布式拒绝服务)攻击已经成为网络攻击的常见手段,而阿里云的DDoS防护和反追踪技术则为企业提供了一道坚实的防…

Harnessing Large Language Models for Training-free Video Anomaly Detection

标题:利用大型语言模型实现无训练的视频异常检测 原文链接:https://openaccess.thecvf.com/content/CVPR2024/papers/Zanella_Harnessing_Large_Language_Models_for_Training-free_Video_Anomaly_Detection_CVPR_2024_paper.pdf 源码链接:ht…

Ubuntu24安装 python3-mysql.connector

正确命令 sudo apt install python3-mysql.connector说明 网络上已有的文章Python版本和Ubuntu版本旧,命令不生效。

【Halcon】 derivate_gauss

1、derivate_gauss Halcon中的derivate_gauss算子是一个功能强大的图像处理工具,它通过将图像与高斯函数的导数进行卷积,来计算各种图像特征。这些特征在图像分析、物体识别、图像增强等领域具有广泛的应用。 参数解释 Sigma:高斯函数的标准差,用于控制平滑的程度。Sigma…