【大数据学习 | Spark-SQL】SparkSQL读写数据

news/2024/11/28 17:58:47/

我们使用sparksql进行编程,编程的过程我们需要创建dataframe对象,这个对象的创建方式我们是先创建RDD然后再转换rdd变成为DataFrame对象。

但是sparksql给大家提供了多种便捷读取数据的方式。

//原始读取数据方式
sc.textFile().toRDD
sqlSc.createDataFrame(rdd,schema)
//更便捷的使用方式
sqlSc.read.text|orc|parquet|jdbc|csv|json
df.write.text|orc|parquet|jdbc|csv|json

write写出存储数据的时候也是文件夹的,而且文件夹不能存在。

  • csv是一个介于文本和excel之间的一种格式,如果是文本打开用逗号分隔的。
  • text文本普通文本,但是这个文本必须只能保存一列内容。

以上两个文本都是只有内容的,没有列的。

  • json是一种字符串结构,本质就是字符串,但是存在kv,例子 {"name":"zhangsan","age":20}

多平台解析方便,带有格式信息。

  • orc格式一个列式存储格式,hive专有的。
  • parquet列式存储,顶级项目

以上都是列式存储问题,优点(1.列式存储,检索效率高,防止冗余查询 2.带有汇总信息,查询特别快 3.带有轻量级索引,可以跳过大部分数据进行检索),他们都是二进制文件,带有格式信息。

jdbc 方式,它是一种协议,只要符合jdbc规范的服务都可以连接,mysql,oracle,hive,sparksql

整体代码:

package com.hainiu.sparkimport org.apache.spark.sql.SQLContext
import org.apache.spark.sql.expressions.Window
import org.apache.spark.{SparkConf, SparkContext}import java.util.Propertiesobject TestMovieWithSql {def main(args: Array[String]): Unit = {//??movie???//1.id  middle=name  last=typeval conf = new SparkConf()conf.setAppName("movie")conf.setMaster("local[*]")conf.set("spark.shuffle.partitions","20")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)import sqlSc.implicits._//deal dataval df = sc.textFile("data/movies.txt").flatMap(t => {val strs = t.split(",")val mid = strs(0)val types = strs.reverse.headval name = strs.tail.reverse.tail.reverse.mkString(" ")types.split("\\|").map((mid, name, _))}).toDF("mid", "mname", "type")df.limit(1).show()val df1 = sc.textFile("data/ratings.txt").map(t=>{val strs = t.split(",")(strs(0),strs(1),strs(2).toDouble)}).toDF("userid","mid","score")df1.limit(1).show()import org.apache.spark.sql.functions._val df11 = df.join(df1, "mid").groupBy("userid", "type").agg(count("userid").as("cnt")).withColumn("rn", row_number().over(Window.partitionBy("userid").orderBy($"cnt".desc))).where("rn = 1").select("userid", "type")val df22 = df.join(df1, "mid").groupBy("type", "mname").agg(avg("score").as("avg")).withColumn("rn", row_number().over(Window.partitionBy("type").orderBy($"avg".desc))).where("rn<4").select("type", "mname")val df33 = df11.join(df22, "type")//spark3.1.2?? spark2.x//    df33.write.csv()df33.write.format("csv").save("data/csv")//    df33.write.
//      csv("data/csv")
//    df33.write.json("data/json")//    df33.write.parquet("data/parquet")
//    df33.write.orc("data/orc")
//    val pro = new Properties()
//    pro.put("user","root")
//    pro.put("password","hainiu")
//    df33.write.jdbc("jdbc:mysql://11.99.173.24:3306/hainiu","movie",pro)}
}

为了简化存储的计算方式:

package com.hainiu.sparkimport org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}object TestSink {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("test sink")conf.setMaster("local[*]")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)import sqlSc.implicits._import org.apache.spark.sql.functions._val df = sc.textFile("data/a.txt").map(t=>{val strs = t.split(" ")(strs(0),strs(1),strs(2),strs(3))}).toDF("id","name","age","gender").withColumn("all",concat_ws(" ",$"id",$"name",$"age",$"gender")).select("all")
//    df.write.csv("data/csv")
//    df.write.format("org.apache.spark.sql.execution.datasources.v2.csv.CSVDataSourceV2")
//      .save("data/csv")
//    df.write.parquet("data/parquet")
//    df.write.format("org.apache.spark.sql.execution.datasources.v2.parquet.ParquetDataSourceV2")
//      .save("data/parquet")
//    df.write.format("org.apache.spark.sql.execution.datasources.v2.json.JsonDataSourceV2")
//      .save("data/json")df.write.format("org.apache.spark.sql.execution.datasources.v2.text.TextDataSourceV2").save("data/text")}
}

读取数据代码:

package com.hainiu.sparkimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContextimport java.util.Propertiesobject TestReadData {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("movie")conf.setMaster("local[*]")conf.set("spark.shuffle.partitions", "20")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)
//    sqlSc.read.text("data/text").show()
//    sqlSc.read.csv("data/csv").show()
//  
//    sqlSc.read.parquet("data/parquet").show()
//    sqlSc.read.json("data/json").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.text.TextDataSourceV2").load("data/text").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.csv.CSVDataSourceV2").load("data/csv").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.json.JsonDataSourceV2").load("data/json").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.parquet.ParquetDataSourceV2").load("data/parquet").show()sqlSc.read.orc("data/orc").show()val pro = new Properties()pro.put("user","root")pro.put("password","hainiu")sqlSc.read.jdbc("jdbc:mysql://11.99.173.24:3306/hainiu","movie",pro).show()}
}

http://www.ppmy.cn/news/1550684.html

相关文章

Stable Diffusion 3详解

&#x1f33a;系列文章推荐&#x1f33a; 扩散模型系列文章正在持续的更新&#xff0c;更新节奏如下&#xff0c;先更新SD模型讲解&#xff0c;再更新相关的微调方法文章&#xff0c;敬请期待&#xff01;&#xff01;&#xff01;&#xff08;本文及其之前的文章均已更新&…

设计模式——空对象模式

定义 空对象模式&#xff08;Null Object Pattern&#xff09;是一种软件设计模式。在 C 中&#xff0c;它主要用于用一个空对象来代替 NULL 引用的检查。这个空对象可以提供默认的行为&#xff0c;从而避免了在代码中频繁地进行空指针&#xff08;NULL&#xff09;检查。 例如…

Linux的前台进程和后台进程

概念定义 前台进程&#xff1a; 前台进程是和用户直接交互的进程&#xff0c;它会占用终端的输入/输出&#xff08;I/O&#xff09;设备。当一个进程在前台运行时&#xff0c;它会从终端读取用户输入的命令&#xff0c;并且将输出结果显示在终端上。例如&#xff0c;当你在终端…

git使用文档手册

创建一个本地代码工作空间&#xff0c;比如这里使用test目录作为工作目录 针对仓库地址 http://192.168.31.125:9557/poxiaoai-crm/project-crm.git。 1. 安装 Git 确保您的系统已经安装了 Git。如果未安装&#xff0c;请根据操作系统访问 Git 官网 下载并安装。 验证安装 …

daos源码编译

1. 前言 本文详细介绍如何在almalinux8.9上编译daos.2.0.0源码。系统环境如下&#xff1a; daos: 2.0.0 linux os: almalinux 8.9 linux kernel: 4.18.0-513.5.1.el8_9.x86_64之所以选择2.0.0版本&#xff0c;是因为daos从2.0.0开始是一个全新的架构设计&a…

ASUS/华硕灵耀14 UX3402ZA 原厂win11系统 工厂文件 带ASUS Recovery恢复

华硕工厂文件恢复系统 &#xff0c;安装结束后带隐藏分区&#xff0c;一键恢复&#xff0c;以及机器所有驱动软件。 系统版本&#xff1a;windows11 原厂系统下载网址&#xff1a;http://www.bioxt.cn 需准备一个20G以上u盘进行恢复 请注意&#xff1a;仅支持以上型号专用…

(四)3D视觉机器人的手眼标定(眼在手外)

内容 1.背景介绍1.1 思路T_target_to_cam求解公式求解 2.操作流程 1.背景介绍 3D视觉机器人指的是机器人通过3D相机提供的3D点云视觉信息&#xff0c;完成某些实际的功能。   目标是将场景信息从相机坐标系变换至机械臂坐标系中&#xff0c;最终是获得相机到机械臂基座的空间…

CTF之密码学(RSA加密)

RSA加密算法是一种公钥加密算法&#xff0c;以下是对其的详细解析&#xff1a; 一、RSA加密算法概述 RSA加密算法由Ron Rivest、Adi Shamir和Leonard Adleman在1977年共同发明&#xff0c;并因此得名。它是第一个既能用于数据加密也能用于数字签名的算法。RSA的安全性基于数论…