图论最短路(floyed+ford)

news/2024/11/28 12:53:09/

Floyd 算法简介

Floyd 算法(也称为 Floyd-Warshall 算法)是一种动态规划算法,用于解决所有节点对之间的最短路径问题。它可以同时处理加权有向图和无向图,包括存在负权边的情况(只要没有负权环)。

核心思想

Floyd 算法的基本思想是利用动态规划,通过逐步引入中间节点优化路径,最终得到每对节点之间的最短路径。

假设图的节点编号为 1,2,…,n,dist[i][j] 表示节点 i 到节点 j 的当前最短路径长度,算法通过以下递推公式更新 dist[i][j]

dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j])

其中:

  • i:起点
  • j:终点
  • k:中间节点

含义:判断是否通过节点 k 可以使 i 到 j 的路径更短,如果更短,则更新。

算法流程

  1. 初始化距离矩阵 dist

    • 如果 i=j,dist[i][j] = 0(自身到自身的距离为 0)。
    • 如果 i≠j 且存在边 (i,j),dist[i][j] = data(边的权值)
    • 如果 i≠j 且不存在边 (i,j),dist[i][j] = INT_MAX(表示无穷大,路径不存在)。
  2. 动态规划

    • 依次引入节点 k(k=1,2,…,n)作为中间节点,更新所有节点对之间的最短路径。
    • 按公式更新 dist[i][j]。
  3. 检查结果

    • 遍历 dist 矩阵,获得任意两点之间的最短路径。
    • 如果对角线上的 dist[i][i] < 0,说明存在负权环。

代码

#include <bits/stdc++.h>
using namespace std;
int dis[110][110],n,m,a,b,want1,want2;
int main()
{cout<<"请输入点数,边数"<<endl;cin>>n>>m;cout<<"输入a点到b点的距离"<<endl;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){dis[i][j]=100000;}}for(int i=1;i<=m;i++){cin>>a>>b;cin>>dis[a][b];dis[b][a]=dis[a][b];}cout<<"输入想查找的两个点的编号"<<endl; cin>>want1>>want2;for(int k=1;k<=n;++k){for(int i=1;i<=n;++i){for(int j=1;j<=n;++j){if(dis[i][j]>dis[i][k]+dis[k][j]){dis[i][j]=dis[i][k]+dis[k][j];  }}}}cout<<want1<<"->"<<want2<<"最短的距离为"<<dis[want1][want2];return 0;
}

Ford 算法简介

Ford 算法(通常指 Bellman-Ford 算法)是一种用于计算单源最短路径的经典算法。它可以在加权有向图中找到从一个源点到所有其他节点的最短路径,支持负权边,并且能够检测负权环


算法思想

Bellman-Ford 算法的核心思想是通过松弛操作(Relaxation),逐步更新最短路径估计值。它基于以下性质:

  • 如果存在从节点 u 到节点 v 的边 (u,v,w),并且通过这条边可以缩短路径,那么更新路径长度:
    dist[v]=min(dist[v],dist[u]+w)

算法执行 n−1 次松弛操作(n 为节点数),确保找到从源点到所有节点的最短路径(若无负权环)。


算法流程

  1. 初始化

    • 将源点的距离设为 0(dist[src] = 0)。
    • 其他节点的初始距离设为无穷大(dist[i] = \infty)。
  2. 松弛所有边

    • 重复 n−1 次(最多需要 n−1 次遍历,因为最短路径最多包含 n−1 条边)。
    • 对图中每条边 (u,v,w),尝试更新节点 vvv 的距离。
  3. 检查负权环

    • 再次遍历所有边。如果发现还能继续松弛,说明存在负权环。

代码

#include <bits/stdc++.h>
using namespace std;
int d[110],n,m,s=1,k;
struct Theedge
{int start,end,data;
}edge[110];
int main()
{cin>>n>>m>>s>>k;for(int i=1;i<=m;i++){cin>>edge[i].start>>edge[i].end>>edge[i].data;}for(int i=1;i<=n;i++){d[i]=100000;}d[s]=0;for(int i=1;i<=n-1;i++){for(int j=1;j<=m;j++){int x=edge[j].start;int y=edge[j].end;int z=edge[j].data;d[y]=min(d[y],d[x]+z);d[x]=min(d[x],d[y]+z);}}cout<<d[k];return 0;
}

 


http://www.ppmy.cn/news/1550620.html

相关文章

【C++】list容器及其模拟实现

目录 1. list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers 1.2.6 list的迭代器失效 2. list的模拟实现 2.1 模拟实现list 2.1.1list节点 2.1.2li…

SQLServer2017新特性CONCAT_WS函数返回从串联或联接的两个或更多字符串值生成的字符串

SQLServer中的CONCAT_WS函数&#xff0c;此函数以端到端的方式返回从串联或联接的两个或更多字符串值生成的字符串。 它会用第一个函数参数中指定的分隔符分隔连接的字符串值。 &#xff08;CONCAT_WS 指示使用分隔符连接。&#xff09; 适用于&#xff1a; Sql Server 2017 …

mapstruct DTO转换使用

定义一个基础接口 package com.example.mapstruct;import org.mapstruct.Named;import java.time.LocalDate; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; import java.util.Date; import java.util.List;/*** Author zmn Dat…

RabbitMQ 单机与集群部署教程

目录 RabbitMQ 单机与集群部署教程第一部分:RabbitMQ 概述第二部分:RabbitMQ 单机部署教程1. 安装 RabbitMQ1.1 安装依赖项1.2 安装 RabbitMQ1.3 验证安装2. 配置 RabbitMQ2.1 配置环境变量2.2 启用 Web 管理插件2.3 创建用户与虚拟主机3. 单机案例代码实现(Python)4. 常见…

Git 进程占用报错-解决方案

背景 大仓库&#xff0c;由于开发者分支较多&#xff0c;我们在使用 git pull 或 git push 等命令时&#xff08;与远端仓库交互的命令&#xff09;&#xff0c;不知之前配置了什么&#xff0c;我的电脑会必现以下报错&#xff08;有非常长一大串报错-不同分支的git进程占用报…

【微服务】SpringBoot 整合Redis Stack 构建本地向量数据库相似性查询

目录 一、前言 二、向量数据库介绍 2.1 什么是向量数据库 2.2 向量数据库特点 2.3 向量数据库使用场景 三、常用的向量数据库解决方案 3.1 Milvus 3.1.1 Milvus是什么 3.1.2 Milvus主要特点 3.2 Faiss 3.2.1 Faiss是什么 3.2.2 Faiss主要特点 3.3 Pinecone 3.3.1 …

C/C++基础知识复习(30)

1) 什么是 C 中的 Lambda 表达式&#xff1f;它的作用是什么&#xff1f; Lambda 表达式&#xff1a; 在 C 中&#xff0c;Lambda 表达式是一种可以定义匿名函数的机制&#xff0c;可以在代码中快速创建一个内联的函数对象&#xff0c;而不需要显式地定义一个函数。Lambda 表…

通过抓包,使用frida定位加密位置

首先我们抓取一下我们要测试的app的某一个目标api&#xff0c;通过抓api的包&#xff0c;得到关键字。 例如&#xff1a;关键字&#xff1a;x-sap-ri 我们得到想要的关键字后&#xff0c;通过拦截 类&#xff0c;寻找我们的关键字&#xff0c;及找到发包收包的位置&#xff0c…