sklearn中常用数据集简介

news/2024/11/27 3:06:04/

scikit-learn库中提供了包括分类、回归、聚类、降维等多种机器学习任务所需的常用数据集,方便进行实验和研究,它们主要被封装在sklearn.datasets中,本文对其中一些常用的数据集进行简单的介绍。

1.Iris(鸢尾花)数据集

该数据集包含150个鸢尾花样本,分为3个品种,每个品种50个样本。每个样本包含4个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。目的是使用这4个特征来对鸢尾花进行分类。scikit-learn中该数据集主要封装在sklearn.datasets.load_iris()中,使用方法如下:

python">from sklearn.datasets import load_iris# 加载数据集
iris = load_iris()# 打印数据集的描述
print(iris.DESCR)# 打印特征名
print(iris.feature_names)# 打印标签类别
print(iris.target_names)# 获取特征矩阵和目标向量
X = iris.data
y = iris.target

在上面的代码中,load_iris() 方法返回一个包含Iris数据集的对象 iris 。可以通过 iris.DESCR、iris.feature_names、iris.target_names 属性打印出数据集的描述、特征名、标签类别。然后,我们可以使用 iris.data 属性获取特征矩阵,使用 iris.target 属性获取标签向量。特征矩阵 X 是一个包含150个样本和4个特征的二维数组,目标向量 y 是一个包含150个元素的一维数组,每个元素表示对应样本的类别。

2.Wine(葡萄酒)数据集

Wine数据集也是一个分类问题的数据集,包含了三个葡萄酒品种(class)的13种化学特征,一共有178个样本。这个数据集是由美国加州大学欧文分校(UCI)提供的,最初是为了研究酒的化学成分和葡萄酒品种之间的关系而构建的。

Wine数据集中的三个葡萄酒品种分别是:

  • Class 1: 59个样本

  • Class 2: 71个样本

  • Class 3: 48个样本

13个化学特征分别是:

  • Alcohol(酒精)

  • Malic acid(苹果酸)

  • Ash(灰分)

  • Alcalinity of ash(灰的碱度)

  • Magnesium(镁)

  • Total phenols(总酚类化合物)

  • Flavanoids(类黄酮)

  • Nonflavanoid phenols(非类黄酮酚)

  • Proanthocyanins(原花青素)

  • Color intensity(颜色强度)

  • Hue(色调)

  • OD280/OD315 of diluted wines(稀释葡萄酒的OD280/OD315比值)

  • Proline(脯氨酸)

Wine数据集使用方法和鸢尾花数据集是类似的:

python">from sklearn.datasets import load_winewine = load_wine()
X, y = wine.data, wine.target

其中,X代表数据集中的13个特征,y代表数据集中的三个葡萄酒品种(class)。

3.Boston(波士顿房价)数据集

Boston数据集则是一个回归问题的经典数据集,包含了美国波士顿地区房屋的14个特征,一共有506个样本。这个数据集同样是由美国加州大学欧文分校(UCI)提供的,我们通常用来研究房屋价格和房屋特征之间的关系。

Boston数据集中的14个特征分别是:

  • CRIM:城镇人均犯罪率

  • ZN:占地面积超过25000平方英尺的住宅用地比例

  • INDUS:城镇非零售业务占地面积的比例

  • CHAS:查尔斯河虚拟变量(如果河流边界,则为1;否则为0)

  • NOX:一氧化氮浓度(每千万分之一)

  • RM:住宅平均房间数

  • AGE:1940年之前建造的自用房屋的比例

  • DIS:到波士顿五个就业中心的加权距离

  • RAD:放射性公路的可达性指数

  • TAX:每10,000美元的全值财产税率

  • PTRATIO:城镇师生比例

  • B:1000(Bk - 0.63)^ 2其中Bk是城镇黑人的比例

  • LSTAT:人口中地位低下者的百分比

  • MEDV:自住房屋房价中位数,以千美元计

该数据集使用方法如下:

python">from sklearn.datasets import load_bostonboston = load_boston()
X, y = boston.data, boston.target

其中,X代表数据集中的14个特征,y代表数据集中的自住房屋房价中位数的目标变量。

4.digits(手写数字)数据集

Digits数据集是一个手写数字识别数据集,它包含了1797张8x8像素的数字图像。每张图像都被转换为64维的特征向量,每个特征表示图像中的一个像素点。每张图像都被标记为0到9中的一个数字,表示图像所代表的数字。这个数据集非常适合用于机器学习中的图像分类问题。

sklearn中,Digits数据集可以通过以下代码进行加载:

python">from sklearn.datasets import load_digitsdigits = load_digits()

按上述步骤执行完之后,digits对象同样包含两个主要属性:data和target。digits.data保存的是特征矩阵,它是一个1797x64的数组,每一行代表一张图像的特征向量。标签保存在digits.target中,它是一个长度为1797的一维数组,每个元素代表相应图像的数字标签。我们使用类似的方法可以导出特征和标签:

python">X, y = boston.data, boston.target

http://www.ppmy.cn/news/1550219.html

相关文章

JDK1.8新增特性

新特性: Lambda表达式: (语法三要素:参数、箭头、代码) JDK1.8引入的一种新语法Lambda表达式,它简化了匿名内部类的使用和提高代码的可读性。 /**正常写法创建Runable**/ Runnable runnable new Runnable() {Overridepublic voi…

HarmonyOS Next 简单上手元服务开发

HarmonyOS Next 简单上手元服务开发 万物互联时代,人均持有设备量不断攀升,设备种类和使用场景更加多样,使得应用开发、应用入口变得更加复杂。在此背景下,应用提 供方和用户迫切需要一种新的服务提供方式,使应用开发…

MySQL基础大全(看这一篇足够!!!)

文章目录 前言一、初识MySQL1.1 数据库基础1.2 数据库技术构成1.2.1 数据库系统1.2.2 SQL语言1.2.3 数据库访问接口 1.3 什么是MySQL 二、数据库的基本操作2.1 数据库创建和删除2.2 数据库存储引擎2.2.1 MySQL存储引擎简介2.2.2 InnoDB存储引擎2.2.3 MyISAM存储引擎2.2.4 存储引…

vue3+elementui-plus el-dialog全局配置点击空白处不关闭弹窗

在与main.ts同级下的plugins文件夹(如果没有,新建一个)下建一个element.js文件(名字随便取) element.js文件内容如下: import ElementPlus from element-plus export default (app) > {console.log(app…

【Axure高保真原型】或和且条件

今天和大家分享或和且条件案例的原型模板,效果包括: 可以选择指标、等式和填写对应值构成条件等式; 点击添加条件按钮,可以增加一行新的条件; 点击所在行的号按钮,可以在该行下方添加一行新的条件&#x…

H.265流媒体播放器EasyPlayer.js网页全终端安防视频流媒体播放器可以播放本地视频吗

H.264/H.265播放器EasyPlayer.js主要用于在网页上实现视频播放功能,特别是针对RTSP流的播放。它允许开发者在不需要安装额外插件或软件的情况下,直接在网页中嵌入和播放来自监控摄像头或其他RTSP源的视频流。 可以播放本地视频吗? 回答&…

SpringBoot技术打造智能考勤平台

第1章 绪论 1.1 项目背景及意义 企业内部工作人员每天当中的出勤记录能够看出员工对于工作的积极性和工作是否高效。这种方式比较困难但是也在持续的前进,以前的通过人工记录出勤的企业工作人员工作时态度应用的方法并不正确,不但是这些不利之处&#xf…

GoF设计模式——结构型设计模式分析与应用

文章目录 UML图的结构主要表现为:继承(抽象)、关联 、组合或聚合 的三种关系。1. 继承(抽象,泛化关系)2. 关联3. 组合/聚合各种可能的配合:1. 关联后抽象2. 关联的集合3. 组合接口4. 递归聚合接…