FIFO和LRU算法实现操作系统中主存管理

news/2024/11/23 11:11:15/

FIFO,用数组实现

1和2都是使用nextReplace实现新页面位置的更新

1、不精确时间:用ctime输出运行时间都是0.00秒

#include <iostream>
#include <iomanip>
#include<ctime>//用于计算时间
using namespace std;// 页访问顺序
int pages[20] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 };// FIFO算法
void fifo(int n) {int memory[5] = { -1, -1, -1, -1, -1 };  // 用于存储主存块,初始化为 -1 表示空int table[5][20] = { -1 };               // 用于记录每次访问的内存状态,初始化为 -1 表示空bool status[20];                         // 记录是否缺页int pageFaults = 0;                      // 缺页次数int nextReplace = 0;                     // 记录下一个要替换的位置// 获取开始时间(时钟周期数)clock_t start = clock();// 遍历每个页面访问for (int j = 0; j < 20; j++) {int page = pages[j];bool found = false;// 检查页面是否已在内存中for (int i = 0; i < n; i++) {if (memory[i] == page) {found = true;break;}}if (!found) {  // 缺页情况memory[nextReplace] = page;       // 替换页面nextReplace = (nextReplace + 1) % n; // 更新替换位置status[j] = false;                // 标记缺页pageFaults++;}else {status[j] = true;                 // 标记命中}// 记录当前内存状态到表格for (int i = 0; i < n; i++) {table[i][j] = memory[i];}}// 获取结束时间(时钟周期数)clock_t end = clock();// 输出结果表格cout << "主存块号 ";for (int j = 0; j < 20; j++) {cout << pages[j] << " ";}cout << endl;for (int i = 0; i < n; i++) {cout << "   " << i << "     ";for (int j = 0; j < 20; j++) {if (table[i][j] == -1) {cout << "  ";  // 空块显示为空格}else {cout << table[i][j] << " ";}}cout << endl;}// 输出缺页标记cout << "是否缺页 ";for (int j = 0; j < 20; j++) {if (status[j]) {cout << "\u221A ";  // Unicode "√"}else {cout << "\u00D7 ";  // Unicode "×"}}cout << endl;cout << "FIFO 缺页率: " << fixed << setprecision(2) << (float)pageFaults / 20 * 100 << "%" << endl;cout << "运行时间: " << (double)(end - start) / CLOCKS_PER_SEC << " 秒" << endl; // 输出运行时间
}int main() {cout << "内存容量为 3 块:\n";fifo(3);cout << endl;cout << "内存容量为 4 块:\n";fifo(4);return 0;
}

2、精确时间:用chrono输出运行时间都是xx微秒,输出时间不定

#include <iostream>
#include <iomanip>
#include <chrono> // 引入chrono库using namespace std;
using namespace std::chrono; // 使用chrono命名空间// 页访问顺序
int pages[20] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 };// FIFO算法
void fifo(int n) {int memory[5] = { -1, -1, -1, -1, -1 };  // 用于存储主存块,初始化为 -1 表示空int table[5][20] = { -1 };               // 用于记录每次访问的内存状态,初始化为 -1 表示空bool status[20];                         // 记录是否缺页int pageFaults = 0;                      // 缺页次数int nextReplace = 0;                     // 记录下一个要替换的位置// 获取开始时间auto start = high_resolution_clock::now();// 遍历每个页面访问for (int j = 0; j < 20; j++) {int page = pages[j];bool found = false;// 检查页面是否已在内存中for (int i = 0; i < n; i++) {if (memory[i] == page) {found = true;break;}}if (!found) {  // 缺页情况memory[nextReplace] = page;       // 替换页面nextReplace = (nextReplace + 1) % n; // 更新替换位置status[j] = false;                // 标记缺页pageFaults++;}else {status[j] = true;                 // 标记命中}// 记录当前内存状态到表格for (int i = 0; i < n; i++) {table[i][j] = memory[i];}}// 获取结束时间auto stop = high_resolution_clock::now();auto duration = duration_cast<microseconds>(stop - start);// 输出结果表格cout << "主存块号 ";for (int j = 0; j < 20; j++) {cout << pages[j] << " ";}cout << endl;for (int i = 0; i < n; i++) {cout << "   " << i << "     ";for (int j = 0; j < 20; j++) {if (table[i][j] == -1) {cout << "  ";  // 空块显示为空格}else {cout << table[i][j] << " ";}}cout << endl;}// 输出缺页标记cout << "是否缺页 ";for (int j = 0; j < 20; j++) {if (status[j]) {cout << "\u221A ";  // Unicode "√"}else {cout << "\u00D7 ";  // Unicode "×"}}cout << endl;cout << "FIFO 缺页率: " << fixed << setprecision(2) << (float)pageFaults / 20 * 100 << "%" << endl;cout << "运行时间: " << duration.count() << " 微秒" << endl; // 输出运行时间
}int main() {cout << "内存容量为 3 块:\n";fifo(3);cout << endl;cout << "内存容量为 4 块:\n";fifo(4);return 0;
}

3、数组模拟队列、类似滑动窗口

#include <iostream>
#include <iomanip>
#include <chrono>
#include <cstring>using namespace std;
using namespace std::chrono;const int N = 1010;
int memory[N];//每次查找页面进行记录的滑动窗口
int table[5][20]; // 最终输出的表格状态
// 页访问顺序
int pages[20] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 };// FIFO算法
void fifo(int n) {memset(memory, 0x3f, sizeof memory);bool status[20];  // 记录是否缺页int pageFaults = 0;       // 缺页次数int hh = 0, tt = -1;      // 队首和队尾指针auto start = high_resolution_clock::now(); // 获取开始时间for (int j = 0; j < 20; j++) {int page = pages[j];bool found = false;// 检查页面是否已在内存中for (int i = hh; i <= tt; i++) {if (memory[i] == page) {found = true;break;}}if (!found) {  // 缺页情况memory[++tt] = page; // 新页面加入队尾// 控制滑动窗口大小为 nif (tt - hh + 1 > n) {hh++; // 超过容量,队首出队}status[j] = false;  // 标记缺页pageFaults++;}else {status[j] = true;   // 标记命中}// 记录当前内存状态到表格for (int i = 0; i < n; i++) {//如果只写memory[hh]的话不就移动队首指针了吗,不可以,现在是赋值阶段,只需要控制负责赋值的滑动指针首先不能超过队尾指针,确保在滑动窗口范围内,//因为有可能这个滑动窗口不足n长,你就会多余赋值本来不能存在的页面号赋值成0x3f,其次需要满足当前检查是否缺页的一次记录memory,该位置是否有值if (i + hh <= tt && memory[i + hh] != 0x3f) {table[i][j] = memory[i + hh];}else {table[i][j] = -1; // 空位显示为 -1}}}auto stop = high_resolution_clock::now(); // 获取结束时间auto duration = duration_cast<microseconds>(stop - start);// 输出结果表格cout << "主存块号 ";for (int j = 0; j < 20; j++) {cout << pages[j] << " ";}cout << endl;for (int i = 0; i < n; i++) {cout << "   " << i << "     ";for (int j = 0; j < 20; j++) {if (table[i][j] == -1) {cout << "  ";  // 空块显示为空格}else {cout << table[i][j] << " ";}}cout << endl;}// 输出缺页标记cout << "是否缺页 ";for (int j = 0; j < 20; j++) {cout << (status[j] ? "\u221A " : "\u00D7 ");//unicode编码,前者代表true则不缺页是√标识,后者代表false是缺页×表示}cout << endl;cout << "FIFO 缺页率: " << fixed << setprecision(2) << (float)pageFaults / 20 * 100 << "%" << endl;cout << "运行时间: " << duration.count() << " 微秒" << endl;
}int main() {cout << "内存容量为 3 块:\n";fifo(3);cout << endl;cout << "内存容量为 4 块:\n";fifo(4);return 0;
}

朴素版算缺页率

#include <iostream>
#include <ctime>
#include <cstring>using namespace std;const int N = 1010;
int memory[N];//每次查找页面进行记录的滑动窗口
int table[5][20]; // 最终输出的表格状态
// 页访问顺序
int pages[20] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 };// FIFO算法
void fifo(int n) {memset(memory, 0x3f, sizeof memory);bool status[20];  // 记录是否缺页int pageFaults = 0;       // 缺页次数int hh = 0, tt = -1;      // 队首和队尾指针clock_t start=clock(); // 获取开始时间for (int j = 0; j < 20; j++) {int page = pages[j];bool found = false;// 检查页面是否已在内存中for (int i = hh; i <= tt; i++) {if (memory[i] == page) {found = true;break;}}if (!found) {  // 缺页情况memory[++tt] = page; // 新页面加入队尾// 控制滑动窗口大小为 nif (tt - hh + 1 > n) {hh++; // 超过容量,队首出队}status[j] = false;  // 标记缺页pageFaults++;}else {status[j] = true;   // 标记命中}// 记录当前内存状态到表格for (int i = 0; i < n; i++) {//如果只写memory[hh]的话不就移动队首指针了吗,不可以,现在是赋值阶段,只需要控制负责赋值的滑动指针首先不能超过队尾指针,确保在滑动窗口范围内,//因为有可能这个滑动窗口不足n长,你就会多余赋值本来不能存在的页面号赋值成0x3f,其次需要满足当前检查是否缺页的一次记录memory,该位置是否有值if (i + hh <= tt && memory[i + hh] != 0x3f) {table[i][j] = memory[i + hh];}else {table[i][j] = -1; // 空位显示为 -1}}}clock_t end = clock(); // 获取结束时间// 输出结果表格cout << "主存块号 ";for (int j = 0; j < 20; j++) {cout << pages[j] << " ";}cout << endl;for (int i = 0; i < n; i++) {cout << "   " << i << "     ";for (int j = 0; j < 20; j++) {if (table[i][j] == -1) {cout << "  ";  // 空块显示为空格}else {cout << table[i][j] << " ";}}cout << endl;}// 输出缺页标记cout << "是否缺页 ";for (int j = 0; j < 20; j++) {cout << (status[j] ? "\u221A " : "\u00D7 ");//unicode编码,前者代表true则不缺页是√标识,后者代表false是缺页×表示}cout << endl;cout << "FIFO 缺页率: " << (float)pageFaults / 20 * 100 << "%" << endl;cout << "运行时间: " << (double)(end-start)/CLOCKS_PER_SEC << " 秒" << endl;}int main() {cout << "内存容量为 3 块:\n";fifo(3);cout << endl;cout << "内存容量为 4 块:\n";fifo(4);return 0;
}

FIFO,用链表实现

LRU,用计数器实现

#include <iostream>
#include <ctime>
#include <cstring>
#include <unordered_map>using namespace std;const int N = 1010;
int table[5][20]; // 最终输出的表格状态
unordered_map<int, int> m; // 键为page号,值为count值
int pages[20] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 };void lru(int n) {memset(table, -1, sizeof table);m.clear();bool status[20]; // 记录是否缺页int pageFaults = 0; // 缺页次数clock_t start = clock(); // 获取开始时间for (int j = 0; j < 20; j++) {int page = pages[j];if (!m.count(page)) { // 没命中就要加入或者替换页面if (m.size() >= n) {// 找到count最大的页面进行替换int maxpage = -1, maxcounts = -1;for (auto p : m) {if (p.second > maxcounts) {maxpage = p.first;maxcounts = p.second;}}m.erase(maxpage);}m[page] = 0;//没命中且主存没满则直接加入页面pageFaults++;status[j] = false; // 标记缺页}else {status[j] = true; // 标记命中m[page] = 0;}// 更新所有页面的count值:命中则置0,没命中加入新页面——满足条件则不加1即可,不管加不加入新页面,其他没中的页面都是要count+1的for (auto& p : m) {if (p.first != page) {p.second += 1;}}// 更新当前主存块内存在的页面int i = 0;for (auto p : m) {if (i < n) {//用一个i去便利贮存块,而不用fortable[i][j] = p.first;i++;}}//一开始写错了:/*for (int i = 0; i < n; i++) {for (auto p : m) {table[i][j] = p.first;}}*/}clock_t end = clock(); // 获取结束时间// 输出结果表格cout << "主存块号 ";for (int j = 0; j < 20; j++) {cout << pages[j] << " ";}cout << endl;for (int i = 0; i < n; i++) {cout << "   " << i << "     ";for (int j = 0; j < 20; j++) {if (table[i][j] == -1) {cout << "  "; // 空块显示为空格}else {cout << table[i][j] << " ";}}cout << endl;}// 输出缺页标记cout << "是否缺页 ";for (int j = 0; j < 20; j++) {cout << (status[j] ? "\u221A " : "\u00D7 ");}cout << endl;cout << "LRU 缺页率: " << (float)(pageFaults) / 20 * 100 << "%" << endl;cout << "运行时间: " << (double)(end - start) / CLOCKS_PER_SEC << " 秒" << endl;
}int main() {cout << "内存容量为 3 块:\n";lru(3);cout << endl;cout << "内存容量为 4 块:\n";lru(4);return 0;
}

LRU,用堆栈实现

两个算法综合在一起看运行速率

#include <iostream>
#include <ctime>
#include <cstring>
#include <unordered_map>
#include <chrono> // 引入chrono库using namespace std;
using namespace std::chrono; // 使用chrono命名空间const int N = 1010;
int table[5][20]; // 最终输出的表格状态
unordered_map<int, int> m; // 键为page号,值为count值
int pages[20] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 };
int memory[N];//每次查找页面进行记录的滑动窗口// FIFO算法
void fifo(int n) {memset(memory, 0x3f, sizeof memory);memset(table, -1, sizeof table);bool status[20];  // 记录是否缺页int pageFaults = 0;       // 缺页次数int hh = 0, tt = -1;      // 队首和队尾指针//clock_t start = clock(); // 获取开始时间// 获取开始时间auto start = high_resolution_clock::now();for (int j = 0; j < 20; j++) {int page = pages[j];bool found = false;// 检查页面是否已在内存中for (int i = hh; i <= tt; i++) {if (memory[i] == page) {found = true;break;}}if (!found) {  // 缺页情况memory[++tt] = page; // 新页面加入队尾// 控制滑动窗口大小为 nif (tt - hh + 1 > n) {hh++; // 超过容量,队首出队}status[j] = false;  // 标记缺页pageFaults++;}else {status[j] = true;   // 标记命中}// 记录当前内存状态到表格for (int i = 0; i < n; i++) {//如果只写memory[hh]的话不就移动队首指针了吗,不可以,现在是赋值阶段,只需要控制负责赋值的滑动指针首先不能超过队尾指针,确保在滑动窗口范围内,//因为有可能这个滑动窗口不足n长,你就会多余赋值本来不能存在的页面号赋值成0x3f,其次需要满足当前检查是否缺页的一次记录memory,该位置是否有值if (i + hh <= tt && memory[i + hh] != 0x3f) {table[i][j] = memory[i + hh];}else {table[i][j] = -1; // 空位显示为 -1}}}//clock_t end = clock(); // 获取结束时间// 获取结束时间auto stop = high_resolution_clock::now();auto duration = duration_cast<microseconds>(stop - start);// 输出结果表格cout << "主存块号 ";for (int j = 0; j < 20; j++) {cout << pages[j] << " ";}cout << endl;for (int i = 0; i < n; i++) {cout << "   " << i << "     ";for (int j = 0; j < 20; j++) {if (table[i][j] == -1) {cout << "  ";  // 空块显示为空格}else {cout << table[i][j] << " ";}}cout << endl;}// 输出缺页标记cout << "是否缺页 ";for (int j = 0; j < 20; j++) {cout << (status[j] ? "\u221A " : "\u00D7 ");//unicode编码,前者代表true则不缺页是√标识,后者代表false是缺页×表示}cout << endl;cout << "FIFO 缺页率: " << (float)pageFaults / 20 * 100 << "%" << endl;//cout << "运行时间: " << (double)(end - start) / CLOCKS_PER_SEC << " 秒" << endl;cout << "运行时间: " << duration.count() << " 微秒" << endl; // 输出运行时间}
void lru(int n) {memset(table, -1, sizeof table);m.clear();bool status[20]; // 记录是否缺页int pageFaults = 0; // 缺页次数//clock_t start = clock(); // 获取开始时间// 获取开始时间auto start = high_resolution_clock::now();for (int j = 0; j < 20; j++) {int page = pages[j];if (!m.count(page)) { // 没命中就要加入或者替换页面if (m.size() >= n) {// 找到count最大的页面进行替换int maxpage = -1, maxcounts = -1;for (auto p : m) {if (p.second > maxcounts) {maxpage = p.first;maxcounts = p.second;}}m.erase(maxpage);}m[page] = 0;//没命中且主存没满则直接加入页面pageFaults++;status[j] = false; // 标记缺页}else {status[j] = true; // 标记命中m[page] = 0;}// 更新所有页面的count值:命中则置0,没命中加入新页面——满足条件则不加1即可,不管加不加入新页面,其他没中的页面都是要count+1的for (auto& p : m) {if (p.first != page) {p.second += 1;}}// 更新当前主存块内存在的页面int i = 0;for (auto p : m) {if (i < n) {//用一个i去便利贮存块,而不用fortable[i][j] = p.first;i++;}}//一开始写错了:/*for (int i = 0; i < n; i++) {for (auto p : m) {table[i][j] = p.first;}}*/}//clock_t end = clock(); // 获取结束时间// 获取结束时间auto stop = high_resolution_clock::now();auto duration = duration_cast<microseconds>(stop - start);// 输出结果表格cout << "主存块号 ";for (int j = 0; j < 20; j++) {cout << pages[j] << " ";}cout << endl;for (int i = 0; i < n; i++) {cout << "   " << i << "     ";for (int j = 0; j < 20; j++) {if (table[i][j] == -1) {cout << "  "; // 空块显示为空格}else {cout << table[i][j] << " ";}}cout << endl;}// 输出缺页标记cout << "是否缺页 ";for (int j = 0; j < 20; j++) {cout << (status[j] ? "\u221A " : "\u00D7 ");}cout << endl;cout << "LRU 缺页率: " << (float)(pageFaults) / 20 * 100 << "%" << endl;//cout << "运行时间: " << (double)(end - start) / CLOCKS_PER_SEC << " 秒" << endl;cout << "运行时间: " << duration.count() << " 微秒" << endl; // 输出运行时间
}int main() {cout << "内存容量为 3 块:\n";fifo(3);cout << endl;lru(3);cout << endl;cout << "内存容量为 4 块:\n";fifo(4);cout << endl;lru(4);return 0;
}

1)主存块数越多的,不论哪个算法,运行时间都更长一些,用的时chrono精确时间微妙

但是同样的,运行每次的时间不定

2)主存块数越多的,不论哪个算法,缺页率都更低一些


http://www.ppmy.cn/news/1549273.html

相关文章

Lisp 语言入门教程(一)

Lisp&#xff08;“LISt Processing”&#xff09;是一种古老而强大的编程语言&#xff0c;特别适合处理符号数据和列表。Lisp 是一种以括号和递归见长的语言&#xff0c;它启发了许多编程范式。以下是一个基础教程&#xff0c;帮助你快速了解 Lisp 的基本语法和功能。 1. 认识…

商用密码产品认证名录说明

《商用密码产品认证目录》是为贯彻落实《中华人民共和国密码法》&#xff0c;进一步健全完善商用密码产品认证体系&#xff0c;更好满足商用密码产业发展需要&#xff0c;根据《国家密码管理局 市场监管总局关于调整商用密码产品管理方式的公告》《市场监管总局 国家密码管理局…

linux从0到1——shell编程8

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&a…

React 表单Form 中的 useForm

1、介绍 useForm 是 React Hook Form 中的核心 Hook&#xff0c;用于管理表单的状态和行为。它提供了处理表单验证、数据收集、状态管理等功能的简便方法。useForm 本质上是用于创建和配置表单&#xff0c;并允许你在组件中与表单字段交互。 2、基本用法 useForm 是一个函数…

SQLite Having 子句

SQLite Having 子句 SQLite 是一种轻量级的数据库管理系统&#xff0c;广泛应用于移动设备和嵌入式系统。它支持标准的 SQL 语法&#xff0c;包括 SELECT 语句中的 HAVING 子句。HAVING 子句通常与 GROUP BY 子句一起使用&#xff0c;用于对分组后的结果进行条件过滤。 SQLit…

查找字符串中某个字符返回字符位置

当然有正则表达式就非常简单,没有的话也不用担心,我们自己写算法完成这个功能. 早期的vs版本不支持vs,当然也可以下载boost来实现,关键还是不想下载,那么就自己写吧. 1.要求,查找字符串中同一个字符,并找出字符的位置. 2.根据字符位置,计算出对应的x,y坐标. 算法第一步,查找字…

解决前后端发版本时候,手动清除浏览器缓存

在.html页面中添加标签 后端配置nginx,让index.html不缓存 location /index.html { add_header Cache-Control “no-cache, no-store”; }在vite.config.ts中添加 rollupOpyions: { output: { // 输出编译后的文件名称&#xff1a;【文件名称.时间戳】、【文件名称.版本号.…

神经网络10-Temporal Fusion Transformer (TFT)

Temporal Fusion Transformer (TFT) 是一种专为时序数据建模而设计的深度学习模型&#xff0c;它结合了Transformer架构和其他技术&#xff0c;旨在有效地处理和预测时序数据中的复杂模式。TFT 于 2020 年由 Google Research 提出&#xff0c;旨在解决传统模型在时序预测中的一…