索引(MySQL)

news/2024/11/23 8:48:25/

 

1. 没有索引,可能会有什么问题

索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行 正确的 create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高 是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个 海量数据的检索速度。

常见索引分为:

案例:

先整一个海量表,在查询的时候,看看没有索引时有什么问题?

--构建一个8000000条记录的数据
--构建的海量表数据需要有差异性,所以使用存储过程来创建, 拷贝下面代码就可以了,暂时不用理解
-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin declare chars_str varchar(100) default'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';declare return_str varchar(255) default '';declare i int default 0;while i < n do set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));set i = i + 1;end while;return return_str;end $$
delimiter ;
--产生随机数字
delimiter $$
create function rand_num()
returns int(5)
begin declare i int default 0;set i = floor(10+rand()*500);
return i;
end $$
delimiter ;
--创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0; set autocommit = 0;  repeatset i = i + 1;insert into EMP values ((start+i) 
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());until i = max_numend repeat;commit;
end $$
delimiter ;
-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);

到此,已经创建出了海量数据的表了。

  • 查询员工编号为998877的员工
select * from EMP where empno=998877;

可以看到耗时4.93秒,这还是在本机一个人来操作,在实际项目中,如果放在公网中,假如同时有 1000个人并发查询,那很可能就死机。

alter table EMP add index(empno);
  • 换一个员工编号,测试看看查询时间
select * from EMP where empno=123456;

2. 认识磁盘

MySQL与存储

MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机 械设备,相比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,可以知道,如何提交效率,是 MySQL 的一个重要话题。

先来研究一下磁盘:

在看看磁盘中一个盘片

扇区

数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当然,数据库文件很大,也很多,一定需要占据多个扇区。

题外话:

  • 从上图可以看出来,在半径方向上,距离圆心越近,扇区越小,距离圆心越远,扇区越大
  • 那么,所有扇区都是默认512字节吗?目前是的,我们也这样认为。因为保证一个扇区多大,是由比特位密度决定的。
  • 不过最新的磁盘技术,已经慢慢的让扇区大小不同了,不过我们现在暂时不考虑。

我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的。(当然,有一些内存文件系统,如:proc,sys之类,我们不考虑)

#数据库文件,本质其实就是保存在磁盘的盘片当中,就是一个一个的文件
[root@VM-0-3-centos ~]# ls /var/lib/mysql -l   #我们目前MySQL中的文件
total 319592
drwxr-x--- 2 mysql mysql      4096 Apr 15 21:46 57test
-rw-r----- 1 mysql mysql        56 Apr 12 15:27 auto.cnf
drwxr-x--- 2 mysql mysql      4096 May 17 13:52 bit_index
-rw------- 1 mysql mysql      1676 Apr 12 15:27 ca-key.pem
-rw-r--r-- 1 mysql mysql      1112 Apr 12 15:27 ca.pem
drwx------ 2 mysql mysql      4096 Apr 13 21:26 ccdata_pro
-rw-r--r-- 1 mysql mysql      1112 Apr 12 15:27 client-cert.pem
-rw------- 1 mysql mysql      1680 Apr 12 15:27 client-key.pem
-rw-r----- 1 mysql mysql     16958 Jun  8 15:46 ib_buffer_pool
-rw-r----- 1 mysql mysql 213909504 Jun  8 16:02 ibdata1
-rw-r----- 1 mysql mysql  50331648 Jun  8 16:02 ib_logfile0
-rw-r----- 1 mysql mysql  50331648 Jun  8 16:02 ib_logfile1
-rw-r----- 1 mysql mysql  12582912 Jun  8 15:46 ibtmp1
drwxr-x--- 2 mysql mysql      4096 Apr 28 14:11 musicserver
drwxr-x--- 2 mysql mysql      4096 May  9 09:47 mysql
srwxrwxrwx 1 mysql mysql         0 Jun  8 15:46 mysql.sock
-rw------- 1 mysql mysql         5 Jun  8 15:46 mysql.sock.lock
drwxr-x--- 2 mysql mysql      4096 Apr 12 15:27 performance_schema
-rw------- 1 mysql mysql      1676 Apr 12 15:27 private_key.pem
-rw-r--r-- 1 mysql mysql       452 Apr 12 15:27 public_key.pem
drwxr-x--- 2 mysql mysql      4096 May  9 09:46 scott
-rw-r--r-- 1 mysql mysql      1112 Apr 12 15:27 server-cert.pem
-rw------- 1 mysql mysql      1676 Apr 12 15:27 server-key.pem
drwxr-x--- 2 mysql mysql     12288 Apr 12 15:27 sys
drwxr-x--- 2 mysql mysql      4096 Jun  5 17:13 test   # 自己定义的数据库,里面有数据
表

所以,最基本的,找到一个文件的全部,本质,就是在磁盘找到所有保存文件的扇区。 而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的。

定位扇区

  • 柱面(磁道): 多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱 面
  • 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的
  • 所以,我们只需要知道,磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编 号。即可在磁盘上定位所要访问的扇区。这种磁盘数据定位方式叫做 CHS 。不过实际系统软件使用 的并不是 CHS (但是硬件是),而是 LBA ,一种线性地址,可以想象成虚拟地址与物理地址。系统 将 LBA 地址最后会转化成为 CHS ,交给磁盘去进行数据读取。不过,我们现在不关心转化细节,知 道这个东西,让我们逻辑自洽起来即可。

结论

  • 我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区 (512字节,部分4096字节),进行IO交互吗?不是
  • 如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言 之,如果硬件发生变化,系统必须跟着变化
  • 从目前来看,单次IO 512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多 次磁盘访问,会带来效率的降低。
  • 之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是 数据块。

故,系统读取磁盘,是以块为单位的,基本单位是 4KB 。

磁盘随机访问(Random Access)与连续访问(Sequential Access)

随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需 要作比较大的移动动作才能重新开始读/写数据。

连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次 IO操作,这样的多个IO操作称为连续访问。

因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随 机访问,而非连续访问。

磁盘是通过机械运动进行寻址的,随机访问不需要过多的定位,故效率比较高。

3. MySQL 与磁盘交互基本单位

而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高 基本的IO效率, MySQL 进行IO的基本单位是 16KB (后面统一使用 InnoDB 存储引擎讲解)

mysql> SHOW GLOBAL STATUS LIKE 'innodb_page_size';
+------------------+-------+
| Variable_name   | Value |
+------------------+-------+
| Innodb_page_size | 16384 |    -- 16*1024=16384
+------------------+-------+
1 row in set (0.01 sec)

也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。 即, MySQL 和磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注 意和系统的page区分)

4. 建立共识

  • MySQL 中的数据文件,是以page为单位保存在磁盘当中的。
  • MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据。
  • 而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中。
  • 所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新 策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位 就是Page。
  • 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称 为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进 行IO交互。
  • 为何更高的效率,一定要尽可能的减少系统和磁盘IO的次数

5. 索引的理解

建立测试表

create table if not exists user ( id int primary key,     --一定要添加主键哦,只有这样才会默认生成主键索引age int not null,name varchar(16) not null
);
mysql> show create table user \G
*************************** 1. row ***************************Table: user
Create Table: CREATE TABLE `user` (`id` int(11) NOT NULL,`age` int(11) NOT NULL,`name` varchar(16) NOT NULL,PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8  --默认就是InnoDB存储引擎
1 row in set (0.00 sec)

插入多条记录

--插入多条记录,注意,我们并没有按照主键的大小顺序插入哦
mysql> insert into user (id, age, name) values(3, 18, '杨过');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(4, 16, '小龙女');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(2, 26, '黄蓉');
Query OK, 1 row affected (0.01 sec)
mysql> insert into user (id, age, name) values(5, 36, '郭靖');
Query OK, 1 row affected (0.00 sec)
mysql> insert into user (id, age, name) values(1, 56, '欧阳锋');
Query OK, 1 row affected (0.00 sec)

查看插入结果

mysql> select * from user;      --发现竟然默认是有序的!是谁干的呢?排序有什么好处呢?
+----+-----+-----------+
| id | age | name     |
+----+-----+-----------+
|  1 |  56 | 欧阳锋   |
|  2 |  26 | 黄蓉     |
|  3 |  18 | 杨过     |
|  4 |  16 | 小龙女   |
|  5 |  36 | 郭靖     |
+----+-----+-----------+
5 rows in set (0.00 sec)

中断一下---为何IO交互要是 Page

为何MySQL和磁盘进行IO交互的时候,要采用Page的方案进行交互呢?用多少,加载多少不香吗?如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那
么就需要2次IO。如果要找id=5,那么就需要5次IO。但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时
候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5
等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部
性原理。
往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数。

理解单个Page

MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,在组织 ,我们目前可以简单理解 成一个个独立文件是有一个或者多个Page构成的。

不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表

因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。

为什么数据库在插入数据时要对其进行排序呢?我们按正常顺序插入数据不是也挺好的吗? 插入数据时排序的目的,就是优化查询的效率。 页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询 的效率是必须的。 正式因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是 可以提前结束查找过程的。

理解多个Page

  • 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一 整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页 模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条 比较来取出特定的数据。
  • 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起 来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这 效率也太低了。

单页情况

针对上面的单页Page,我们能否也引入目录呢?当然可以

那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次, 才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。现在我们可以再次 正式回答上面的问题了,为何通过键值 MySQL 会自动排序?

  • 可以很方便引入目录

多页情况

MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下 所有的数据,那么必定会有多个页来存储数据。

在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然 后通过指针的方式,将所有的Page组织起来。

需要注意,上面的图,是理想结构,大家也知道,目前要保证整体有序,那么新插入的数据,不一定会 在新Page上面,这里仅仅做演示。

这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问 题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到 内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。

那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录。

  • 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。
  • 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。
  • 其中,每个目录项的构成是:键值+指针。图中没有画全。

存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可 通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。 其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。 可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担 心,可以在加目录页

这货就是传说中的B+树啊!没错,至此,我们已经给我们的表user构建完了主键索引。 随便找一个id=?我们发现,现在查找的Page数一定减少了,也就意味着IO次数减少了,那么效率也就 提高了。

复盘一下

  • Page分为目录页和数据页。目录页只放各个下级Page的最小键值。
  • 查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减 少了IO次数

InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?

  • 链表?线性遍历
  • 二叉搜索树?退化问题,可能退化成为线性结构
  • AVL &&红黑树?虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体 过高,大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互。虽然你很秀,但 是有更秀的。
  • Hash?官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持.Hash跟 进其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行,另外还有其 他差别,有兴趣可以查一下。

  • B树?最值得比较的是 InnoDB 为何不用B树作为底层索引

数据结构演示链接:Data Structure Visualization

B+ vs B

B树

B+树

上面的图,是在网上找的,大家也可以搜一下。

目前这两棵树,对我们最有意义的区别是:

  • B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和 Page指针
  • B+叶子节点,全部相连,而B没有

为何选择B+

  • 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少。
  • 叶子节点相连,更便于进行范围查找

聚簇索引 VS 非聚簇索引

MyISAM 存储引擎-主键索引

MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM 表的主索引, Col1 为主键。

其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据 的地址。

相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。

--终端A
mysql> create database myisam_test;  --创建数据库
Query OK, 1 row affected (0.00 sec)
mysql> use myisam_test;
Database changed
mysql> create table mtest(-> id int primary key,-> name varchar(11) not null-> )engine=MyISAM;              --使用engine=MyISAM
Query OK, 0 rows affected (0.01 sec)
--终端B
[root@VM-0-3-centos mysql]# ls myisam_test/ -al  --mysql数据目录下
total 28
drwxr-x--- 2 mysql mysql 4096 Jun 13 13:33 .
drwxr-x--x 13 mysql mysql 4096 Jun 13 13:32 ..
-rw-r----- 1 mysql mysql   61 Jun 13 13:32 db.opt
-rw-r----- 1 mysql mysql 8586 Jun 13 13:33 mtest.frm   --表结构数据
-rw-r----- 1 mysql mysql   0 Jun 13 13:33 mtest.MYD   --该表对应的数据,当前没有数
据,所以是0
-rw-r----- 1 mysql mysql 1024 Jun 13 13:33 mtest.MYI   --该表对应的主键索引数据

其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引

--终端A
mysql> create database innodb_test;       --创建数据库
Query OK, 1 row affected (0.00 sec)
mysql> use innodb_test;
Database changed
mysql> create table itest(-> id int primary key,-> name varchar(11) not null-> )engine=InnoDB;                    --使用engine=InnoDB
Query OK, 0 rows affected (0.02 sec)
--终端B
[root@VM-0-3-centos mysql]# ls innodb_test/ -al
total 120
drwxr-x--- 2 mysql mysql 4096 Jun 13 13:39 .
drwxr-x--x 14 mysql mysql 4096 Jun 13 13:38 ..
-rw-r----- 1 mysql mysql   61 Jun 13 13:38 db.opt
-rw-r----- 1 mysql mysql 8586 Jun 13 13:39 itest.frm     --表结构数据
-rw-r----- 1 mysql mysql 98304 Jun 13 13:39 itest.ibd     --该表对应的主键索引和用户
数据,虽然现在一行数据没有,但是该表并不为0,因为有主键索引数据

其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引

当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这 种索引可以叫做辅助(普通)索引

对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。

下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别

同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助 索引如下图:

可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。

所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键 到主索引中检索获得记录。这种过程,就叫做回表查询

为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间了。

总结:

  • 如何理解硬盘
  • 如何理解柱面,磁道,扇区,磁头
  • InnoDB 主键索引和普通索引
  • MyISAM 主键索引和普通索引
  • 其他数据结构为何不能作为索引结构,尤其是B+和B
  • 聚簇索引 VS 非聚簇索引

6. 索引操作

创建主键索引

  • 第一种方式
-- 在创建表的时候,直接在字段名后指定 primary key
create table user1(id int primary key, name varchar(30));
  • 第二种方式:
-- 在创建表的最后,指定某列或某几列为主键索引
create table user2(id int, name varchar(30), primary key(id)); 
  • 第三种方式:
create table user3(id int, name varchar(30));
-- 创建表以后再添加主键
alter table user3 add primary key(id);

主键索引的特点:

  • 一个表中,最多有一个主键索引,当然可以使符合主键
  • 主键索引的效率高(主键不可重复)
  • 创建主键索引的列,它的值不能为null,且不能重复
  • 主键索引的列基本上是int

唯一索引的创建

  • 第一种方式
-- 在表定义时,在某列后直接指定unique唯一属性。
create table user4(id int primary key, name varchar(30) unique);
  • 第二种方式
-- 创建表时,在表的后面指定某列或某几列为unique
create table user5(id int primary key, name varchar(30), unique(name));
  • 第三种方式
create table user6(id int primary key, name varchar(30));
alter table user6 add unique(name);

唯一索引的特点:

  • 一个表中,可以有多个唯一索引
  • 查询效率高
  • 如果在某一列建立唯一索引,必须保证这列不能有重复数据
  • 如果一个唯一索引上指定not null,等价于主键索引

普通索引的创建

  • 第一种方式
create table user8(id int primary key,name varchar(20),email varchar(30),index(name) --在表的定义最后,指定某列为索引
);

第二种方式

create table user9(id int primary key, name varchar(20), email 
varchar(30));
alter table user9 add index(name); --创建完表以后指定某列为普通索引

普通索引的特点:

  • 一个表中可以有多个普通索引,普通索引在实际开发中用的比较多
  • 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引

全文索引的创建

当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有 要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进 行全文检索,可以使用sphinx的中文版(coreseek)。

CREATE TABLE articles (id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,title VARCHAR(200),body TEXT,FULLTEXT (title,body)
)engine=MyISAM;
INSERT INTO articles (title,body) VALUES('MySQL Tutorial','DBMS stands for DataBase ...'),('How To Use MySQL Well','After you went through a ...'),('Optimizing MySQL','In this tutorial we will show ...'),('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),('MySQL vs. YourSQL','In the following database comparison ...'),('MySQL Security','When configured properly, MySQL ...');
  • 查询有没有database数据

如果使用如下查询方式,虽然查询出数据,但是没有使用到全文索引

mysql> select * from articles where body like '%database%';
+----+-------------------+------------------------------------------+
| id | title             | body                                     |
+----+-------------------+------------------------------------------+
|  1 | MySQL Tutorial   | DBMS stands for DataBase ...             |
|  5 | MySQL vs. YourSQL | In the following database comparison ... |
+----+-------------------+------------------------------------------+

可以用explain工具看一下,是否使用到索引

mysql> explain select * from articles where body like '%database%'\G
*************************** 1. row ***************************id: 1select_type: SIMPLEtable: articlestype: ALL
possible_keys: NULLkey: NULL <== key为null表示没有用到索引key_len: NULLref: NULLrows: 6Extra: Using where
1 row in set (0.00 sec)
  • 如何使用全文索引呢?
mysql> SELECT * FROM articles-> WHERE MATCH (title,body) AGAINST ('database');+----+-------------------+------------------------------------------+| id | title             | body                                     |+----+-------------------+------------------------------------------+|  5 | MySQL vs. YourSQL | In the following database comparison ... ||  1 | MySQL Tutorial   | DBMS stands for DataBase ...             |+----+-------------------+------------------------------------------+

通过explain来分析这个sql语句

mysql> explain SELECT * FROM articles WHERE MATCH (title,body) AGAINST 
('database')\G
*************************** 1. row ***************************id: 1select_type: SIMPLEtable: articlestype: fulltext
possible_keys: titlekey: title <= key用到了titlekey_len: 0ref: rows: 1Extra: Using where

查询索引

  • 第一种方法: show keys from 表名
mysql> show keys from goods\G*********** 1. row ***********Table: goods   <= 表名Non_unique: 0       <= 0表示唯一索引Key_name: PRIMARY <= 主键索引Seq_in_index: 1Column_name: goods_id <= 索引在哪列Collation: ACardinality: 0Sub_part: NULLPacked: NULLNull: Index_type: BTREE   <= 以二叉树形式的索引Comment: 
1 row in set (0.00 sec)
  • 第二种方法: show index from 表名;
  • 第三种方法(信息比较简略): desc 表名;

删除索引

  • 第一种方法-删除主键索引: alter table 表名 drop primary key;
  • 第二种方法-其他索引的删除: alter table 表名 drop index 索引名;
  • 索引名就是show keys from 表名中的 Key_name 字段 mysql> alter table user10 drop index idx_name;
  • 第三种方法方法: drop index 索引名 on 表名 mysql> drop index name on user8;

索引创建原则

  • 比较频繁作为查询条件的字段应该创建索引
  • 唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件
  • 更新非常频繁的字段不适合作创建索引
  • 不会出现在where子句中的字段不该创建索引


http://www.ppmy.cn/news/1549250.html

相关文章

从零开始认识显卡

显卡&#xff08;GPU&#xff0c;全称为Graphics Processing Unit&#xff09;&#xff0c;是电脑中专门负责图形处理的硬件组件。以下是从零开始认识显卡的简单介绍&#xff1a; 1. 显卡的基本组成 显卡通常由以下几个主要部分组成&#xff1a; GPU核心&#xff1a;显卡的“…

社交媒体营销新趋势:如何通过海外平台提升品牌曝光度?

社交媒体不仅是简单的信息传播工具&#xff0c;更是连接用户与品牌之间的重要纽带。每天&#xff0c;有数以亿计的全球用户在不同平台上活跃&#xff0c;潜藏着巨大的市场潜力。对于企业来说&#xff0c;关键在于制定清晰的营销策略&#xff0c;精准把握不同社交平台的特性&…

Spring Cloud Data Flow快速入门Demo

1.什么是Spring Cloud Data Flow&#xff1f; Spring Cloud Data Flow 是一个用于构建和编排数据处理流水线的云原生框架。它提供了一种简化的方式来定义、部署和管理数据处理任务和流应用程序。以下是一些关键特性和组件&#xff1a; 关键特性 流处理&#xff1a; 支持实时数…

Postman之数据提取

系列文章目录 1.Postman之安装及汉化基本使用介绍 2.Postman之变量操作 3.Postman之数据提取 4.Postman之pm.test断言操作 5.Postman之newman Postman之数据提取 1. 提取请求头\request中的数据2. 提取响应消息\response中的数据3. 通过正在表达式提取4. 提取cookies数据 本文主…

【大数据知识】ClickHouse入门

ClickHouse入门 概述一、主要应用场景二、技术特点三、性能表现四、限制与不足五、使用建议 分布式架构一、架构特点二、核心组件三、数据组织方式四、分布式查询原理五、优势与局限性 核心架构一、ClickHouse执行过程架构二、ClickHouse数据存储架构 为什么速度这么快存储层&a…

时序论文23|ICML24谷歌开源零样本时序大模型TimesFM

论文标题&#xff1a;A DECODER - ONLY FOUNDATION MODEL FOR TIME - SERIES FORECASTING 论文链接&#xff1a;https://arxiv.org/abs/2310.10688 论文链接&#xff1a;https://github.com/google-research/timesfm 前言 谷歌这篇时间序列大模型很早之前就在关注&#xff…

【Python入门第九讲】 集合(set)

_集合&#xff08;Set&#xff09;_是 Python 中的一种基本数据结构&#xff0c;它是由不重复元素组成的无序集合。集合对象支持多种数学运算&#xff0c;如并集、交集、差集和对称差等。 集合的特点包括&#xff1a; 无序性&#xff1a; 集合中的元素没有顺序&#xff0c;不能…

Java二分查找+冒泡排序

二分查找在编程中是用来查找目标元素在有序数组中的位置,并返回目标元素的索引 先给定一个有序数组,在创建一个方法来进行二分 主要思想是:根据数组具有下标的特点来分别计算,最左边的索引,以及最右边的索引,在判断目标元素与中间元素的大小,如果目标元素小于中间元素,我们可…