协方差矩阵及其计算方法

news/2024/11/16 17:58:39/

协方差矩阵(Covariance Matrix)是一个描述多维数据特征之间相互关系的矩阵,广泛应用于统计学和机器学习中。它用于表示各个特征之间的协方差,是分析多维数据分布和特征依赖性的重要工具。

什么是协方差矩阵?

协方差矩阵是一个方阵,其每个元素 σ i j \sigma_{ij} σij 代表第 i i i 个特征与第 j j j 个特征之间的协方差协方差本质上是衡量两个变量是否相关以及它们的相关程度:

  • 如果协方差为正,说明这两个特征具有正相关关系,即当一个特征增大时,另一个特征也倾向于增大。
  • 如果协方差为负,说明这两个特征具有负相关关系,即当一个特征增大时,另一个特征倾向于减小。
  • 如果协方差接近零,说明这两个特征之间几乎没有线性关系。

协方差矩阵是一个对称矩阵,因为 σ i j = σ j i \sigma_{ij} = \sigma_{ji} σij=σji协方差矩阵的对角线元素是每个特征的方差,而非对角线元素则是特征之间的协方差

协方差矩阵的计算

假设我们有一个包含 n n n 个样本和 m m m 个特征的数据集 X \mathbf{X} X,其中每个样本 x i = ( x i 1 , x i 2 , … , x i m ) \mathbf{x_i} = (x_{i1}, x_{i2}, \dots, x_{im}) xi=(xi1,xi2,,xim) 是一个 m m m-维向量。为了计算协方差矩阵,我们通常按照以下步骤操作:

1. 计算每个特征的均值

首先,计算每个特征的均值。假设数据集的第 i i i 列是特征 x i x_i xi,其均值 x i ˉ \bar{x_i} xiˉ 为:

x i ˉ = 1 n ∑ k = 1 n x k i \bar{x_i} = \frac{1}{n} \sum_{k=1}^{n} x_{ki} xiˉ=n1k=1nxki

2. 中心化数据

对于每个特征,减去该特征的均值,得到中心化的数据:

x k i ′ = x k i − x i ˉ x_{ki}^\prime = x_{ki} - \bar{x_i} xki=xkixiˉ

3. 计算协方差矩阵

协方差矩阵的元素 σ i j \sigma_{ij} σij 代表第 i i i 个特征与第 j j j 个特征之间的协方差,计算公式如下:

σ i j = 1 n − 1 ∑ k = 1 n ( x k i ′ ) ( x k j ′ ) \sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki}^\prime)(x_{kj}^\prime) σij=n11k=1n(xki)(xkj)

协方差矩阵是对称的,因此计算出来的矩阵是一个 m × m m \times m m×m 的对称矩阵,其中对角线上的元素是特征的方差,非对角线元素是特征之间的协方差

协方差矩阵的示例

假设我们有以下数据集,其中每行表示一个样本,每列表示一个特征:

X = ( 1 2 2 3 3 4 4 5 ) \mathbf{X} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{pmatrix} X= 12342345

这是一个包含 4 个样本和 2 个特征的数据集,特征分别为 “特征 1” 和 “特征 2”。

第一步:计算每个特征的均值
  • 对于特征 1:
    x 1 ˉ = 1 + 2 + 3 + 4 4 = 2.5 \bar{x_1} = \frac{1 + 2 + 3 + 4}{4} = 2.5 x1ˉ=41+2+3+4=2.5

  • 对于特征 2:
    x 2 ˉ = 2 + 3 + 4 + 5 4 = 3.5 \bar{x_2} = \frac{2 + 3 + 4 + 5}{4} = 3.5 x2ˉ=42+3+4+5=3.5

第二步:中心化数据

将每个特征的均值从每个数据点中减去,得到中心化的数据集:

X ′ = ( 1 − 2.5 2 − 3.5 2 − 2.5 3 − 3.5 3 − 2.5 4 − 3.5 4 − 2.5 5 − 3.5 ) = ( − 1.5 − 1.5 − 0.5 − 0.5 0.5 0.5 1.5 1.5 ) \mathbf{X^\prime} = \begin{pmatrix} 1 - 2.5 & 2 - 3.5 \\ 2 - 2.5 & 3 - 3.5 \\ 3 - 2.5 & 4 - 3.5 \\ 4 - 2.5 & 5 - 3.5 \end{pmatrix} = \begin{pmatrix} -1.5 & -1.5 \\ -0.5 & -0.5 \\ 0.5 & 0.5 \\ 1.5 & 1.5 \end{pmatrix} X= 12.522.532.542.523.533.543.553.5 = 1.50.50.51.51.50.50.51.5

第三步:计算协方差矩阵

接下来,我们计算协方差矩阵的元素。由于数据集中有 2 个特征,我们需要计算以下协方差

  1. 协方差 σ 11 \sigma_{11} σ11(特征 1 的方差)
    σ 11 = 1 3 [ ( − 1.5 ) 2 + ( − 0.5 ) 2 + ( 0.5 ) 2 + ( 1.5 ) 2 ] = 1 3 [ 2.25 + 0.25 + 0.25 + 2.25 ] = 5 3 ≈ 1.6667 \sigma_{11} = \frac{1}{3} [(-1.5)^2 + (-0.5)^2 + (0.5)^2 + (1.5)^2] = \frac{1}{3} [2.25 + 0.25 + 0.25 + 2.25] = \frac{5}{3} \approx 1.6667 σ11=31[(1.5)2+(0.5)2+(0.5)2+(1.5)2]=31[2.25+0.25+0.25+2.25]=351.6667

  2. 协方差 σ 12 \sigma_{12} σ12(特征 1 和特征 2 的协方差
    σ 12 = 1 3 [ ( − 1.5 ) ( − 1.5 ) + ( − 0.5 ) ( − 0.5 ) + ( 0.5 ) ( 0.5 ) + ( 1.5 ) ( 1.5 ) ] = 1 3 [ 2.25 + 0.25 + 0.25 + 2.25 ] = 5 3 ≈ 1.6667 \sigma_{12} = \frac{1}{3} [(-1.5)(-1.5) + (-0.5)(-0.5) + (0.5)(0.5) + (1.5)(1.5)] = \frac{1}{3} [2.25 + 0.25 + 0.25 + 2.25] = \frac{5}{3} \approx 1.6667 σ12=31[(1.5)(1.5)+(0.5)(0.5)+(0.5)(0.5)+(1.5)(1.5)]=31[2.25+0.25+0.25+2.25]=351.6667

  3. 协方差 σ 22 \sigma_{22} σ22(特征 2 的方差)
    σ 22 = 1 3 [ ( − 1.5 ) 2 + ( − 0.5 ) 2 + ( 0.5 ) 2 + ( 1.5 ) 2 ] = 5 3 ≈ 1.6667 \sigma_{22} = \frac{1}{3} [(-1.5)^2 + (-0.5)^2 + (0.5)^2 + (1.5)^2] = \frac{5}{3} \approx 1.6667 σ22=31[(1.5)2+(0.5)2+(0.5)2+(1.5)2]=351.6667

因此,协方差矩阵为:

Σ = ( 1.6667 1.6667 1.6667 1.6667 ) \Sigma = \begin{pmatrix} 1.6667 & 1.6667 \\ 1.6667 & 1.6667 \end{pmatrix} Σ=(1.66671.66671.66671.6667)

协方差矩阵的意义

协方差矩阵中我们可以得出以下结论:

  • 方差:特征 1 和特征 2 的方差都是 1.6667,这说明数据在这两个特征上的离散程度是相同的。
  • 协方差:特征 1 和特征 2 之间的协方差是 1.6667,表示这两个特征之间有正相关关系。

总结

协方差矩阵是分析多维数据的重要工具,它能够描述数据集中各个特征之间的关系。在机器学习中,协方差矩阵常用于主成分分析(PCA)等技术中,以帮助理解数据的内在结构。通过计算协方差矩阵,我们可以更好地了解特征之间的相关性和数据的分布特性。


http://www.ppmy.cn/news/1547505.html

相关文章

快速利用c语言实现线性表(lineList)

线性表是数据结构中最基本和简单的一个,它是n的相同类型数据的有序序列,我们也可以用c语言中的数组来理解线性表。 一、线性表声明 我们定义一个线性表的结构体,内部有三个元素:其中elem是一个指针,指向线性表的头&am…

力扣 LeetCode 1047. 删除字符串中的所有相邻重复项(Day5:栈与队列)

解题思路&#xff1a; 方法一&#xff1a;栈 class Solution {public String removeDuplicates(String s) {Deque<Character> stack new ArrayDeque<>();for (char c : s.toCharArray()) {if (stack.isEmpty() || stack.peek() ! c) stack.push(c);else stack.p…

ubuntu下openssl签名证书制作流程及验证demo

1.创建根CA证书 生成 rootCA.key 以及 rootCA.crt. 用你的域名或者ip地址替换demo.mlopshub.com&#xff0c;比如192.168.10.11 openssl req -x509 \-sha256 -days 356 \-nodes \-newkey rsa:2048 \-subj "/CNdemo.mlopshub.com/CCN/LBeijing" \-keyout rootCA.key …

fpga 同步fifo

FIFO 基础知识 FIFO&#xff08;First In First Out&#xff0c;即先入先出&#xff09;&#xff0c;是一种数据缓存器&#xff0c;用来实现数据先入先出 的读写方式。在 FPGA 或者 ASIC 中使用到的 FIFO 一般指的是对数据的存储具有先入先出 特性的缓存器&#xff0c;常被用于…

远程控制步骤

当远在千里之外的朋友想求助你帮他找到他电脑上的文件、或者是给他安装软件时。但是你给他说了他又找不到&#xff0c;那么这时你就可以通过控制对方的电脑去做一系列的操作。 如何远程控制对方的电脑非常关键。 方法一&#xff08;Windows自带远程桌面功能&#xff09;&#…

利用正则表达式批量修改文件名

首先&#xff0c; 我们需要稍微学习一下正则表达式的使用方式&#xff0c;可以看这里&#xff1a;Notepad正则表达式使用方法_notepad正则匹配-CSDN博客 经过初步学习之后&#xff0c;比较重要的内容我做如下转载&#xff1a; 元字符是正则表达式的基本构成单位&#xff0c;它们…

离线语音识别自定义功能怎么用?

一、离线语音识别 随着人工智能的飞速发展&#xff0c;离线语音识别技术成为了一项备受瞩目的创新。离线语音识别技术能够将人的语音转化为可理解的文本&#xff0c;无需依赖网络连接&#xff0c;极大地提升了语音识别的便捷性和实用性。 与传统的云端语音识别相比&#xff0c;…

【go从零单排】File Paths文件路径

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 在 Go 中&#xff0c;处理文件路径通常使用 path/filepath 包。这个包提供了一系…