8. 数据结构——邻接表、邻接矩阵的基本操作

news/2024/11/7 11:19:04/

一、邻接表

1. 内容

2. 实现代码(直接可以复制使用)

//邻接表的相关操作
#include<bits/stdc++.h>
#define MVnum 100
#define OK 1
#define ERROR -1
using namespace std;typedef int Status; 
typedef char VerTexType;  //假设顶点的数据类型为char
typedef int ArcType;      //假设边的权值类型为int
bool visit1[MVnum];      //dfs的时候状态数组 
bool visit2[MVnum];      //bfs的时候状态数组 //定义结构体(边结点+头节点数组+相关信息)
//1.边结点
typedef struct ArcNode{int adjvex;  struct ArcNode *nextarc;
}ArcNode;//2.头结点数组 
typedef struct VNode{VerTexType data;ArcNode *firstarc;
}VNode,AdList[MVnum]; typedef struct{AdList vertices;int vexnum,arcnum;  //图当前的顶点数、边数 
}ALGraph; //查找顶点值在图中存储的位置 
Status LocateVex(ALGraph G,VerTexType v){for(int i=0;i<G.vexnum;i++){if(G.vertices[i].data==v)return i;}return -1;  //表示未找到 
}//1.创建有向图
Status CreateDG(ALGraph &G){VerTexType v1,v2;  //临时值 cout<<"输入总顶点、总边数:"<<endl;cin>>G.vexnum>>G.arcnum;cout<<"输入每个顶点的值"<<endl; for(int i=0;i<G.vexnum;i++){cin>>G.vertices[i].data;G.vertices[i].firstarc=NULL;   //头结点指向为空 }for(int i=0;i<G.arcnum;i++){cout<<"请输入两个邻接的点:"<<endl; cin>>v1>>v2;int t1=LocateVex(G,v1); int t2=LocateVex(G,v2);//建立从t1->t2的边 ArcNode *p1=new ArcNode;  //建立一个新边结点p1->adjvex=t2;p1->nextarc=G.vertices[t1].firstarc;G.vertices[t1].firstarc=p1; 
//		//建立从t2->t1的边 
//		ArcNode *p2=new ArcNode;  //建立一个新边结点
//		p2->adjvex=t1;
//		p2->nextarc=G.vertices[t2].firstarc;
//		G.vertices[t2].firstarc=p2; }return OK; 
}//计算有向图的出度 
Status CalculateDGO(ALGraph G,VerTexType v){int x=0;int i=LocateVex(G,v);  //得到该顶点的位置if(i==-1) return ERROR;ArcNode *p=G.vertices[i].firstarc;while(p){x++;p=p->nextarc;} return x;
} 
//有向图的入度
//需要把每个顶点遍历一次,找到到点i的情况,增加1 
Status CalculateDGI(ALGraph G,VerTexType v){int x=0;int i=LocateVex(G,v);  //得到该顶点的位置if(i==-1) return ERROR;for(int k=0;k<G.vexnum;k++){ArcNode *p=G.vertices[k].firstarc;while(p){if(p->adjvex==i)x++;p=p->nextarc;}}return x;
} 
//有向图的总度 
Status CalculateSum(ALGraph G,VerTexType v){if(LocateVex(G,v)==-1) return ERROR;return CalculateDGO(G,v)+CalculateDGI(G,v);
}//深度优先遍历 
void dfs(ALGraph G,int v){cout<<G.vertices[v].data;visit1[v]=true;  //表明已经遍历过ArcNode *p=G.vertices[v].firstarc;while(p){if(!visit1[p->adjvex])dfs(G,p->adjvex);p=p->nextarc;	}
} //广度优先遍历 
void bfs(ALGraph G,VerTexType v){int x=LocateVex(G,v);queue<int> q;  //队列q.push(x);visit2[x]=true;  //表示已经遍历过while(!q.empty()){int t=q.front();q.pop();cout<<G.vertices[t].data;//找t位置结点相邻的未被访问的点ArcNode *p=G.vertices[t].firstarc;while(p){if(!visit2[p->adjvex]){q.push(p->adjvex);visit2[p->adjvex]=true;}p=p->nextarc;} } 
} //输出在数据库中本身存储形式 
void Reverse(ALGraph G){for(int i=0;i<G.vexnum;i++){if(i!=0)  cout<<endl;cout<<G.vertices[i].data;ArcNode *p=G.vertices[i].firstarc;while(p){cout<<"->"<<G.vertices[p->adjvex].data;p=p->nextarc;}} 
} void menu(){cout<<"==========================="<<endl;cout<<"          菜单             "<<endl; cout<<"==========================="<<endl;cout<<"     1.图的建立            "<<endl;cout<<"     2.求顶点的度          "<<endl;cout<<"     3.深度优先遍历        "<<endl;cout<<"     4.广度优先遍历        "<<endl; cout<<"     5.输出存储结构        "<<endl; cout<<"     0.退出程序            "<<endl; cout<<"==========================="<<endl; 
} int main(void) {VerTexType v;ALGraph G;char order;int t;menu();cout<<"请输入你的选择:";cin>>order;while(order!='0'){switch(order){case '1':CreateDG(G);cout<<"此有向图的邻接表建立成功!!!"<<endl;cout<<"此有向图在邻接表中存储结构为:"<<endl; Reverse(G);cout<<endl;break;case '2':cout<<"请输入需要查找度数的顶点:";cin>>v;if(LocateVex(G,v)==-1)cout<<v<<"不存在于此图中"<<endl;else {cout<<"顶点"<<v<<"的出度为:"<<CalculateDGO(G,v)<<endl;cout<<"顶点"<<v<<"的入度为:"<<CalculateDGI(G,v)<<endl;cout<<"顶点"<<v<<"的总度为:"<<CalculateSum(G,v)<<endl; }		break;case '3':cout<<"请输出深度优先遍历的起点:";cin>>v; memset(visit1,false,sizeof(visit1));t=LocateVex(G,v);cout<<"深度优先遍历结果为:";dfs(G,t);cout<<""<<endl; //实现换行 break;case '4':cout<<"请输出广度优先遍历的起点:";cin>>v; memset(visit2,false,sizeof(visit2));cout<<"广度优先遍历结果为:";bfs(G,v);cout<<""<<endl; //实现换行 break;		case '5':cout<<"此有向图在邻接表中存储结构为:"<<endl; Reverse(G);cout<<endl;break;	case '0':cout<<"程序终止";break;default:cout<<"输入不合法,重新输入"<<endl;				 }if(order!='0'){menu();cout<<"请输入你的选择:";cin>>order;}}return 0;
}

二、邻接矩阵

因为邻接矩阵大部分实现代码和邻接表一致,故这里就只写了邻接矩阵的创建。

#include<bits/stdc++.h>
#define MVnum 100
using namespace std;typedef int Status;
typedef char VerTexType;   //假设每个顶点的数据类型是char 
typedef int ArcType;      //假设每条边权值的数据类型是inttypedef struct{VerTexType vexs[MVnum];   //顶点表 int vexnum,arcnum;  //图当前的顶点数和边数ArcType arcs[MVnum][MVnum];  //邻接矩阵存储权值 
}AMGraph; //给定顶点值,找到其位置 
Status LocateVex(AMGraph G,VerTexType v){for(int i=0;i<G.vexnum;i++){if(G.vexs[i]==v)return i;}return -1;
}//1.建立有向图 
Status CreateDG(AMGraph &G){VerTexType v1,v2; cout<<"输入总顶点、总边数:"<<endl;cin>>G.vexnum>>G.arcnum;cout<<"输入每个顶点的值"<<endl; for(int i=0;i<G.vexnum;i++){cin>>G.vexs[i];}for(int i=0;i<G.arcnum;i++){cout<<"请输入两个邻接的点:"<<endl; cin>>v1>>v2; int t1=LocateVex(G,v1); int t2=LocateVex(G,v2);G.arcs[t1][t2]=1;}
}//2.输出 
void Reverse(AMGraph G){for(int i=0;i<G.vexnum;i++){if(i!=0) cout<<endl;for(int j=0;j<G.vexnum;j++){cout<<G.arcs[i][j]<<" ";}}
}int main(void){AMGraph G;CreateDG(G);Reverse(G);return 0;
} 


http://www.ppmy.cn/news/1545040.html

相关文章

Python 三维图表绘制指南

Python 三维图表绘制指南 在数据可视化中&#xff0c;三维图表可以更直观地展示数据之间的关系&#xff0c;尤其是当数据具有多个维度时。Python 提供了多个库来绘制三维图表&#xff0c;其中最常用的就是 Matplotlib。本文将介绍如何使用 Matplotlib 绘制三维图表&#xff0c…

pycharm中的服务是什么?

在PyCharm中&#xff0c;服务是指允许在PyCharm中运行的一种功能或插件。服务可以是内置的&#xff0c;也可以是通过插件安装的。 一些常见的PyCharm服务包括&#xff1a; 调试服务&#xff1a;PyCharm提供了全功能的调试工具&#xff0c;可以帮助开发人员通过设置断点、监视变…

JavaScript中的变量作用域

写在前面 在JavaScript中&#xff0c;变量作用域是指变量在代码中可见的范围。理解变量作用域对于编写高效、可维护的JavaScript代码至关重要。本文将深入探讨JavaScript中的变量作用域&#xff0c;包括全局作用域、函数作用域和块级作用域。 全局作用域 在JavaScript中&…

猫用空气净化器哪个牌子好?求除毛好、噪音小的宠物空气净化器!

换毛季家里孩子不省心&#xff0c;疯狂掉落的猫毛和空气中乱飞的浮毛可把我折磨死了。每天下班都要抽出时间来清理&#xff0c;不然这个家就不能要了。猫毛靠我自己可以打扫&#xff0c;浮毛还得借助宠物空气净化器这种专业工具。所以我最近着手做功课&#xff0c;打算入手一台…

梧桐数据库-使用Python和梧桐数据库进行多维数据分析分享

在数据驱动的商业决策中&#xff0c;多维数据分析&#xff08;MDA&#xff09;是一种强大的工具&#xff0c;它允许我们从多个角度探索数据&#xff0c;揭示潜在的趋势和模式。本文将介绍如何使用Python结合梧桐数据库来执行多维数据分析&#xff0c;并通过一个实际的例子来展示…

dockerfile 和 docker compose

目录 1.dockerfile和docker compose区别 主要区别 目的&#xff1a; 格式&#xff1a; 使用场景&#xff1a; 2.Dockerfile 2.1基本格式 2.2模块解析 2.3例子 3.docker compose 3.1安装 3.2格式 3.3执行 1.dockerfile和docker compose区别 Dockerfile 和…

wifiTrackerlib源码解读

1. 监听wifi相关的Broadcast 1.1 根据布局找到wifi显示用到的方法 首先研究原生carSetting的代码布局---找到wifi_list_fragment.xml&#xff0c;可以知道这里是wifi显示界面的xml然后是找到wifi对应的布局部分: <com.android.car.ui.preference.CarUiPreferenceandroid:…

【系统集成项目管理工程师教程】第10章 启动过程组

启动过程组包含制定项目章程和识别干系人两个过程&#xff0c;是项目的起始阶段&#xff0c;旨在协调各方期望&#xff0c;明确项目范围、目标与干系人&#xff0c;确保项目符合组织战略&#xff0c;为项目成功奠定基础&#xff0c;在项目管理中起着至关重要的引领作用。 10.…