论文学习 | 《锂离子电池健康状态估计及剩余寿命预测研究》

news/2024/10/31 12:35:10/

Hi,大家好,我是半亩花海。本文主要对上述论文《锂离子电池健康状态估计及剩余寿命预测研究》进行学习与阅读总结,便于后续科研进一步学习纯小白自读汇总版)。总体感觉这篇文章还是比较偏向人工智能方向的,包括特征提取、LSTM、高斯过程回归等模型方法,不过后面还会学习其他算法模型在此场景下的应用。


目录

一、关键词

二、专业术语

三、研究现状

1. SOH估计方法研究现状

2. RUL预测方法研究现状

3. 数据驱动方法存在的问题

四、数据集

五、研究方法

六、研究结果


一、关键词

锂离子电池,健康状态估计,剩余寿命预测,数据驱动

二、专业术语

  • BMS:Battery Management System,电池管理系统;BMS估计的状态有荷电状态SOC、健康状态SOH,能量状态(State of Energy,SOE)
  • ICA:Incremental capacity analysis,电量增量分析法,反应了电池的衰退程度、机理
  • Time Steps:样本时间步数,LSTM中关键的模型参数,反映了模型在时间序列上相互依赖的强弱程度
  • ICA:电量增量分析法
  • MSE:均方误差
  • MAPE:平均绝对百分比误差
  • GPR:Gaussian Process Regression,高斯过程回归

三、研究现状

1. SOH估计方法研究现状

(1)基于实验

使用专业仪器设备和规范流程,直接测量电池的参数:可用容量、可用能量、欧姆内阻、交流阻抗等

(2)基于模型

等效电路模型法(扩展卡尔曼滤波算法等)

电化学模型法(伪二维模型(P2D)、单粒子模型(SP))

(3)基于数据驱动

——建立一个能够反映输入与输出关系的黑箱模型

提取强相关的健康特征,建立模型 比如:

  • 人工神经网络:自回归移动平均(ARMA)模型和Elman神经网络(反馈型神经网络)的融合模型
  • 支持向量机(SVM,有监督学习):比如LS-SVM(最小二乘-支持向量机),贝叶斯框架优化模型参数
  • 集成学习
  • 高斯过程回归:基于统计学原理和贝叶斯理论的机器学习方法(处理高维、小样本、非线性等复杂的回归问题)
    •  直接提取特征:提取充电的恒流恒压曲线的特征,用机器学习估计SOH
    •  间接提取特征:电量增量分析法(ICA)和差分电压分析法(DVA)+人工智能算法

2. RUL预测方法研究现状

(1)基于数学模型

电化学模型法、等效电路模型法和经验模型法

(2)基于数据驱动

  • 人工智能法:神经网络(ANN)、支持向量机(SVM)、相关向量机(SVR)、长短期记忆神经网络(LSTM)
  • 统计学:经验模态解耦(EMD)+自回归集成滑动平均模型(ARIMA)、高斯过程混合算法(GPM)、稀疏贝叶斯预测建模(SBPM)+温度效应、曲线聚类+隐马尔科夫模型

3. 数据驱动方法存在的问题

  • 健康特征质量不佳
  • 算法缺乏时序关联
  • 算法缺乏适应性和可解释

四、数据集

马里兰大学高级生命周期工程中心(CALCE)提供了包括完整和部分的电池充放电循环数据、静态和动态驾驶工况下充放电循环数据。

五、研究方法

(1)特征提取(增量分析法ICA、Pearson相关性分析法)

(2)长短时记忆神经网络LSTM

  • 模型性能评估:K折交叉验证法
  • 模型误差评价:均方误差(MSE)、平均绝对百分比误差(MAPE)

(3)高斯过程回归模型

  • 高斯过程回归的解释方法:函数空间法、权重空间法
  • 核函数:均值函数、协方差函数
  • 超参数:核函数中的未知参数;极大似然估计法、共轭梯度法

六、研究结果

(1)从循环寿命和日历寿命两个角度,分析影响电池寿命衰退速率的外部因素:

较小的放电倍率、较小的充放电深度和较低的充放电SOC区间有利于延长的电池循环寿命;

②电池存储时较低的温度和较低的SOC有利于延长电池的日历寿命。

(2)电池老化过程中其内部的欧姆内阻和极化内阻逐渐增大,因此在同一相变反应下其测得的端电压会升高;各个健康因子与电池容量之间有着较好的相关性。

(3)基于LSTM的方法由于其具备独特的长短期记忆机制,能够对锂离子电池老化过程的局部特性和全局特性都做到有效跟踪,算法的准确性优于SVR和ANN;LSTM算法在不同电池间具有较好的迁移性。

(4)RUL预测方法及结果

  • RUL单点预测:安时积分法

  • RUL长期预测:单指数模型、高斯过程回归模型;基于高斯过程回归的方法所取得的预测效果明显好于传统的单指数模型方法


http://www.ppmy.cn/news/1543341.html

相关文章

Windows on ARM编译安装openBLAS

Windows on ARM编译安装openBLAS 要求下载源码OpenBLAS可以使用LLVM工具链(clang-cl和flang)从源代码为Windows on ARM(WoA)进行构建。v0.3.24版本(预构建包)的构建和测试已通过。 要求 LLVM:版本需大于等于17.0.4 LLVM版本16及以下会生成冲突的符号(如_QQ*等)。 LL…

STM32F103C8T6 IO 操作

1.开启相关时钟 在 STM32 微控制器中,开启 GPIO 端口的时钟是确保 IO 口可以正常工作的第一步。 查找 RCC 寄存器使能时钟 在 STM32 中,时钟控制的寄存器通常位于 RCC (Reset and Clock Control) 模块中。不同的 STM32 系列(如 STM32F1、STM…

【PUCCH——Format 1】

PUCCH format 1 在时域上占4~14个OFDM符号,频域上占1个PRB,有DMRS。 可以传递1~2个比特的HARQ-ACK和1个比特的SR。 当传输1比特信息时,用BPSK调制,传输2比特信息时,用QPSK调制。 支持多UE复用。 SR1比特HARQ&#…

链式二叉树(数据结构)——C语言

1.链式二叉树 ⽤链表来表⽰⼀棵⼆叉树,即⽤链来指⽰元素的逻辑关系。通常的⽅法是链表中每个结点由三个域组 成,数据域和左右指针域,左右指针分别⽤来给出该结点左孩⼦和右孩⼦所在的链结点的存储地址, 其结构如下: …

Linux 命令行学习:数据流控制、文本处理、文件管理与自动化脚本 (第二天)

目标&#xff1a;掌握更多命令行技巧和文本处理工具。 1. 管道和重定向 &#xff08;1&#xff09;输入输出重定向 输出重定向 (>)&#xff1a;将命令的输出写入到文件中&#xff0c;如果文件存在&#xff0c;则覆盖。 演示 &#xff1a; 输入重定向&#xff08;<&a…

打造厨艺交流平台:Spring Boot开发全攻略

2 相关技术 2.1 Spring Boot框架简介 Spring Boot是由Pivotal团队提供的全新框架&#xff0c;其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置&#xff0c;从而使开发人员不再需要定义样板化的配置。通过这种方式&#xff0c;Sprin…

便捷之选:微信小程序驱动的停车场管理系统

作者介绍&#xff1a;✌️大厂全栈码农|毕设实战开发&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 &#x1f345;获取源码联系方式请查看文末&#x1f345; 推荐订阅精彩专栏 &#x1f447;&#x1f3fb; 避免错过下次更新 Springboot项目精选实战案例 更多项目…

YARN集群优化:专家不告诉你的事

标签概念 YARN中,可以通过给节点打标签(Node Labels)来实现物理隔离。每个节点可以关联一个或多个标签,每个标签代表了节点的某种特性或分组。在提交应用程序时,可以指定应用程序需要运行在具有特定标签的节点上,从而实现不同应用在集群节点间的物理隔离。 操作步骤 具体步骤…