rnn/lstm

news/2024/10/30 13:43:26/

tip:本人比较小白,看到july大佬的文章受益匪浅,现在其文章基础上加上自己的归纳、理解,以及gpt的答疑,如果有侵权会删。 july大佬文章来源:如何从RNN起步,一步一步通俗理解LSTM_rnn lstm-CSDN博客

-------------------------------------------------------------------------------------------------------------------

1.RNN

1.1 从单层网络到经典的RNN结构

在学习LSTM之前,得先学习RNN,而在学习RNN之前,首先要了解一下最基本的单层网络,它的结构如下图所示:

输入是x,经过变换Wx+b和激活函数f,得到输出y。相信大家对这个已经非常熟悉了。

在实际应用中,我们还会遇到很多序列形的数据:

如:

        1. 自然语言处理问题。x1可以看做是第一个单词,x2可以看做是第二个单词,依次类推
        2. 语音处理。此时,x1、x2、x3……是每帧的声音信号。
        3. 时间序列问题。例如每天的股票价格等等

而其中,序列形的数据就不太好用原始的神经网络处理了。

为了建模序列问题,RNN引入了隐状态h(hidden state)的概念,隐状态h可以对序列形的数据提取特征,接着再转换为输出。

--------------------------------------------------------------------------------------------------------------------

1.2 由x到h

先从h的计算开始看:

图示中记号的含义是:

  • a)圆圈或方块表示的是向量。
  • b)一个箭头就表示对该向量做一次变换。如上图中h_{0}x_{1}分别有一个箭头连接,就表示对h_{0}x_{1}各做了一次变换

说白了,h_1基于上一个隐藏层的状态h_{0}和当前的输入x_{1}计算得来,且提前说一嘴,泛化到任一时刻,便是h_{t}=f\left(W h_{t-1}+U x_{t}\right),而这里的f一般是tanh、sigmoid、ReLU等非线性的激活函数。

\rightarrow  且在实践中,h_t一般只包含前面若干步而非之前所有步的隐藏状态

在 RNN 模型(或者神经网络模型)中,权重矩阵W和偏置向量 b初始时一般是随机生成的(在之后不断训练)

(即上面的U、W、b参数)

  1. 在计算时,每一步使用的参数U、W、b都是一样的,也就是说每个步骤的参数都是共享的,这是RNN的重要特点,一定要牢记;
  2. 而下文马上要看到的LSTM中的权值则不共享,因为它是在两个不同的向量中。而RNN的权值为何共享呢?很简单,因为RNN的权值是在同一个向量中,只是不同时刻而已。

依次计算剩下来的(使用相同的参数U、W、b):

 我们这里为了方便起见,只画出序列长度为4的情况,实际上,这个计算过程可以无限地持续下去。

------------------------------------------------------------------------------------------------------------------------------

1.3 tip: 为什么要用到激活函数?

如果没有激活函数,那么公式就是一个线性映射:

对于序列数据的多个时间步,如果在每一层计算时都没有激活函数,输出将是输入的线性组合。最终,整个 RNN 变成一个线性模型,即:

这里的W是个向量。 

这是一个简单的线性变换,无法捕捉复杂的非线性关系,而我们通常需要通过神经网络处理非线性问题。

  • 序列数据(如自然语言、时间序列)中的依赖关系往往是复杂且非线性的。激活函数(如 Tanh 或 ReLU)能够让神经网络捕捉这些非线性模式,使得模型能够学习复杂的时间依赖关系。
  • TanhSigmoid 是常见的激活函数,用于控制隐藏状态的更新。Tanh 的输出范围是 [-1, 1],能够有效捕捉输入数据的正负变化;Sigmoid 的输出范围是[0,1],适合用于门控机制。

---------------------------------------------------------------------------------------------------------------------------------


1.4 由h到y 


我们目前的RNN还没有输出,得到输出值的方法就是直接通过h进行计算。

这里从h到y又有不同的说法了,即是否也选择激活函数,比如上面出现了softmax函数。

在 RNN 的每一个时间步t,我们有一个隐藏状态 ht​,它保存了当前时间步的特征表示。在这个时间步中,我们希望将隐藏状态映射为一个输出 yt。

  • 分类任务:预测某个类别(如情感分析)。
  • 回归任务:预测数值(如股价、温度)。
  • 语言模型:预测下一个单词。

核心公式如下:

根据任务的不同,我们会选择不同的激活函数f:

  1. 分类任务(如多分类的文本分类):

                使用 Softmax 激活函数,将输出变为概率分布。    

其中​。Softmax 确保所有输出值都在 0 到 1之间,并且所有类别的概率和为 1。 

举个例子:

        2. 二分类任务(如情感分析:积极 vs 消极):

                使用 Sigmoid 激活函数,将输出限制在 0 到 1 之间,表示属于某一类别的概率。

        3. 回归任务(如股价预测、温度预测):

                不需要激活函数,直接使用线性输出:

----------------------------------------------------------------------------------------------------------------------

1.5 RNN 的正向传播

这里先从x到h,再从h到y,总体来看是x到y,这个步骤就是rnn的正向传播

而总的来说,在 RNN 中输入和输出的序列长度不需要相同。具体情况要看任务需求,可以是一对一多对多一对多多对一 等多种形式。每一种模式都有其适用的场景和特点。

除了刚才图上面的多对多相互对应的情况(相当于即时反馈),还有其他常见的场景。比如下面一对多和多对一:

 以及序列长度不同的多对多:

 

1.6 RNN 的训练:反向传播算法

RNN 的训练与普通神经网络类似,也是通过梯度下降法来优化参数。但由于 RNN 的参数在每个时间步共享,因此要用一种特殊的算法,叫做 BPTT(Backpropagation Through Time,时间反向传播算法)

上面的W是向量。反向传播和正向传播是对应的,正向传播从头到尾得到返回值y,反向传播则从末尾到开头连续修正相应参数。

---------------------------------------------------------------------------------------------------------------------------

1.7 正向与反向传播的关系

  • 单次正向传播:给定一个输入序列 x1,x2,…,xT,RNN 会从第一个时间步传递到最后一个时间步,得到输出序列 y1,y2,…,yT和损失值。
  • 单次反向传播(BPTT):从损失函数开始,从时间步 T 向前传播误差,依次传递回到时间步 1。这会更新每一层的参数。

整个训练过程中:RNN 需要多轮(epoch)训练,即对整个数据集多次进行正向和反向传播。

--------------------------------------------------------------------------------------------------------------------------

1.8 RNN 中的梯度消失与梯度爆炸问题

1. 梯度消失问题:

  • 在反向传播(BPTT)过程中,误差需要沿时间轴逐步传播。由于每次传播都会涉及到链式求导,当激活函数(如 sigmoid 或 tanh)将输出限制在(0,1) 或 (−1,1)范围内时,梯度的值会越来越小。
  • 经过多次时间步的传播后,远处时间步的梯度会指数级缩小,导致模型在更新参数时,无法有效调整靠前时间步的权重。这就是梯度消失

2. 梯度爆炸问题:

  • 这是指在某些情况下,梯度的值会变得非常大,导致模型参数更新不稳定甚至发散。
  • 梯度爆炸通常出现在训练初期或权重初始化不当的情况下,但这不是图中所描述问题的主要原因。

解决方案:

  • 梯度裁剪(Gradient Clipping):将梯度限制在一个最大值范围内,防止梯度爆炸。
  • LSTM / GRU:引入门控机制来解决梯度消失问题。

梯度消失在实际例子上的体现(前部序列信息权重降低):

在 RNN 中,隐藏状态ht会从前一时刻 ht​-1 传递到下一时刻 ht+1​。这种逐步传播的特点使得距离较远的时间步(例如 x1对应的状态)信息可能会在后面的时间步中变得越来越不重要。

梯度爆炸的例子倒是挺少见,反正就是梯度消失的相反面,由于某些不好的原因导致的梯度过于大,导致模型参数更新不稳定甚至发散。

2. LSTM

2.1 为什么要从rnnlstm(解决梯度消失和梯度爆炸)

LSTM 通过引入细胞状态门控机制(遗忘门、输入门和输出门),实现了信息的线性传递,避免了多次非线性激活导致的梯度消失。同时,遗忘门动态调节信息的保留与遗忘,避免无关信息的累积,减少梯度爆炸的风险。这种设计使得梯度在长时间步上传递时更加稳定,从而有效解决了 RNN 中的梯度消失和梯度爆炸问题,让模型能够捕捉长期依赖关系。

再具体一点:

LSTM 通过以下方式解决了 RNN 中的梯度消失和梯度爆炸问题:

  1. 细胞状态的线性传递:信息可以跨多个时间步不受抑制地传递,缓解了梯度消失问题。
  2. 门控机制的动态调节:输入门、遗忘门、输出门选择性地更新状态,避免了无关信息的累积,减少了梯度爆炸的风险。
  3. 减少梯度缩放的次数:LSTM 通过线性更新状态,将非线性变换限制在局部,使梯度的稳定性更好。
  4. 遗忘门控制信息流:有效控制长期状态中的冗余信息,进一步缓解梯度爆炸问题。

---------------------------------------------------------------------------------------------------------------------------------

2.2 忘记门--Forget Gate(ft)

内容来自如何从RNN起步,一步一步通俗理解LSTM_rnn lstm-CSDN博客

可以点进网页里看动图,支持原作者july。

2.3 输入门--Input Gate(it)and 候选状态--Candidate State(~Ct)

 2.4 细胞状态--Cell State(Ct)

 2.5 输出门--Output Gate(ot)

2.6 数据形状(向量、矩阵等) 

上面提到的公式中大部分符号(如xt、ht、Ct等)都代表向量矩阵,而不是标量。这是因为 LSTMRNN 处理的是高维数据,如词向量、时间序列中的多特征数据等。

 其中,batch_size 表示一个批次中的样本数量,hidden_size 是隐藏状态的维度。

2.7 提到的权值是否共享问题

在遗忘门部分,july哥提到的rnnlstm权值是否共享问题,其实很容易理解,rnnlstm在不同时间步之间都是共享的,而在lstm不同门里,不同门有独立的参数。

  • RNN 中:所有时间步的参数共享,即所有时间步使用相同的权重矩阵 W,U。
  • LSTM 中:不同的门(遗忘门、输入门、输出门、候选单元)之间的权重不共享,但在同一门的不同时间步之间权重是共享的。

2.8 激活函数(sigmoid 或 tanh)的选择

  1. sigmoid 用于比例控制(信息保留、写入、输出),因为其输出在0−1 之间。
  2. tanh 用于状态表示(候选状态和隐藏状态),因为其输出在 −1 到 1之间,允许正负信息的存在。

通过这种组合,LSTM 能够精确控制信息的流动,避免梯度消失,并有效捕捉长时间依赖关系。

具体机制大致如下:

 

 2.9 lstm的参数调整(反向传播)

lstm也是通过反向传播来调节参数,先介绍下在调参层面上lstmrnn之间的关系。

LSTM 和 RNN 在反向传播中主要区别和联系是:

  • RNN 由于简单且高效,适合处理 短序列或短期依赖问题。但它的梯度消失问题使得它难以捕捉长时间的依赖关系。
  • LSTM 通过 细胞状态的线性传递和门控机制 缓解了梯度消失问题,因此更适合处理 长时间序列。但代价是训练时的计算量更大,参数更新更复杂。

lstm调参在大方向上类似于rnn,先正向传播,后计算损失。

然后是反向传播调参,即把损失函数对各参数求偏导(梯度)

然后结合旧的参数和学习率,得到新的参数,此外还提到了一些优化算法,能更好的调整学习率。

  

 最后,有一些超参数调节。


http://www.ppmy.cn/news/1543114.html

相关文章

微服务的发布策略与设计约束

分布策略微服务架构中的蓝绿发布和金丝雀发布策略是两种常见的版本控制和发布管理方法,旨在提高软件的发布安全性和可用性。 蓝绿发布 概念:蓝绿发布是一种将两个相同的环境(蓝和绿)进行交替使用的发布策略。在某个时刻,只有一个环境在处理用户请求,而另一个环境则处于…

EJB项目如何升级SpringCloud

记录某金融机构老项目重构升级为微服务过程1 如何从EJB架构拆分微服务 这个非常有趣的过程,整个过程耗时大致接近半年时光,需要考虑到重构升级保留原来的业务线,而且还要考虑后续的维护成本,保留现有的数据库表结构,…

vue3父组件控制子组件表单验证及获取子组件数值方法

1、关键部分的代码如下&#xff0c;我努力交代清楚了&#xff0c;希望能让大家看懂。 <template><KeepAlive><component ref"comp" :is"compNames[steps[compIndex].comp]" /></KeepAlive><el-button click"prevBtn"…

流媒体协议.之(RTP,RTCP,RTSP,RTMP,HTTP)(三)

本文&#xff0c;分析&#xff0c;贴出一些博主的关键源码 git地址&#xff1a;https://github.com/ireader/media-server?tabreadme-ov-file 网络上也有开源的库&#xff0c;可以用这些。 推流协议库有&#xff0c;librtmp&#xff0c;librtp&#xff0c;jrtplib等&#xf…

Logo内容移除、盒子阴影、精灵图、滑动门

Logo内容移除 像小米&#xff0c;百度&#xff0c;京东&#xff0c;淘宝都有自己的Logo(网页的标志), 1.将a标签的背景background作为logo使用&#xff0c;所以点击图片也可以跳转。 2. 可以在logo中设置文字&#xff0c;但是要将文字移除给用户更好的体验。 3. &#xff08;…

矩阵压缩格式转换:COO转换CSC(C++)

目录 一、基本理论 1.1 COO格式 1.2 CSR格式 1.3 CSC格式 二、代码实现 三、测试 一、基本理论 稀疏矩阵&#xff08;Sparse Matrix&#xff09;是大部分元素为零的矩阵&#xff0c;与之相对应的是稠密矩阵&#xff08;Dense Matrix&#xff09;。科学领域、工程计算、图…

2024年10月29日Github流行趋势

项目名称&#xff1a;Amphion 项目维护者&#xff1a;lmxue HeCheng0625 yuantuo666 RMSnow HarryHe11 项目介绍&#xff1a;Amphion是一个用于音频、音乐和语音生成的工具包。它旨在支持可重复的研究&#xff0c;并帮助初学者在音频、音乐和语音生成研究与开发领域起步。 项目…

React-query vs. 神秘新工具:前端开发的新较量

流畅的分页体验&#xff1a;AlovaJS的分页请求策略 在现代web应用中&#xff0c;分页是一个常见的功能需求。无论是浏览商品列表、查看文章集合&#xff0c;还是管理后台的数据表格&#xff0c;用户都需要一种高效且流畅的方式来浏览大量数据。然而&#xff0c;实现一个流畅且…