深入理解支持向量机:从基本原理到实际应用

news/2024/10/29 5:35:26/

第6章 支持向量机

在本章中,我们将深入探讨支持向量机(SVM)这一强大的分类算法。SVM在模式识别和机器学习领域广泛应用,尤其在处理高维数据时表现出色。我们将依次讨论间隔与支持向量、对偶问题、核函数、间隔与正则化、支持向量量回归和核方法。

6.1 间隔与支持向量

支持向量机的核心思想是找到一个最佳超平面,将不同类别的数据分开。这个超平面使得两类之间的间隔最大化。设有两类样本点,分别为 C 1 C_1 C1 C 2 C_2 C2,最佳超平面可以表示为:

w ⋅ x + b = 0 w \cdot x + b = 0 wx+b=0

其中, w w w是法向量, x x x是样本点, b b b是偏置。间隔定义为到超平面的最短距离,表示为:

margin = 2 ∣ ∣ w ∣ ∣ \text{margin} = \frac{2}{||w||} margin=∣∣w∣∣2

通过最大化间隔,我们希望找到最优的 w w w b b b,使得:

min ⁡ w , b 1 2 ∣ ∣ w ∣ ∣ 2 \min_{w,b} \frac{1}{2}||w||^2 w,bmin21∣∣w2

同时满足约束条件:

y i ( w ⋅ x i + b ) ≥ 1 , ∀ i y_i(w \cdot x_i + b) \geq 1, \forall i yi(wxi+b)1,i

样本点中位于间隔边界上的样本称为支持向量,它们在确定超平面位置时起着关键作用。

6.2 对偶问题

为了更好地求解SVM的优化问题,我们引入拉格朗日乘子法,将原问题转化为对偶问题。我们定义拉格朗日函数为:

L ( w , b , α ) = 1 2 ∣ ∣ w ∣ ∣ 2 − ∑ i = 1 m α i [ y i ( w ⋅ x i + b ) − 1 ] L(w,b,\alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{m} \alpha_i [y_i(w \cdot x_i + b) - 1] L(w,b,α)=21∣∣w2i=1mαi[yi(wxi+b)1]

通过对 w w w b b b求偏导数并令其为零,我们可以得到对应的对偶问题:

max ⁡ α ∑ i = 1 m α i − 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y i y j ( x i ⋅ x j ) \max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) αmaxi=1mαi21i=1mj=1mαiαjyiyj(xixj)

在约束条件:

∑ i = 1 m α i y i = 0 , α i ≥ 0 \sum_{i=1}^{m} \alpha_i y_i = 0, \quad \alpha_i \geq 0 i=1mαiyi=0,αi0

对偶问题的求解可以更加高效,尤其在样本数量较大时。

6.3 核函数

SVM的一个重要扩展是使用核函数来处理非线性可分问题。核函数通过隐式映射将输入空间映射到更高维的特征空间,从而使得原本非线性可分的问题在新空间中变得线性可分。常见的核函数包括:

  1. 线性核 K ( x i , x j ) = x i ⋅ x j K(x_i,x_j)=x_i \cdot x_j K(xi,xj)=xixj
  2. 多项式核 K ( x i , x j ) = ( γ x i ⋅ x j + r ) d K(x_i,x_j)=(\gamma x_i \cdot x_j + r)^d K(xi,xj)=(γxixj+r)d
  3. 高斯核(RBF核) K ( x i , x j ) = exp ⁡ ( − ∣ ∣ x i − x j ∣ ∣ 2 2 σ 2 ) K(x_i,x_j)=\exp\left(-\frac{||x_i-x_j||^2}{2\sigma^2}\right) K(xi,xj)=exp(2σ2∣∣xixj2)

在使用核函数时,我们只需要在对偶问题中替换点积$ x_i \cdot x_j 为核函数 为核函数 为核函数 K(x_i,x_j) $,从而避免直接计算高维特征。

6.4 间隔与正则化

在实际应用中,为了提高模型的泛化能力,我们引入正则化技术以防止过拟合。支持向量机的正则化形式为:

min ⁡ w , b 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 m ξ i \min_{w,b} \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i w,bmin21∣∣w2+Ci=1mξi

其中, C C C为正则化参数, ξ i \xi_i ξi为松弛变量,用于处理分类错误。约束条件变为:

y i ( w ⋅ x i + b ) ≥ 1 − ξ i , ξ i ≥ 0 y_i(w \cdot x_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0 yi(wxi+b)1ξi,ξi0

通过调整参数 C C C,可以控制模型的复杂性。

6.5 支持向量量回归

支持向量机不仅可以用于分类,也可以用于回归问题。支持向量回归(SVR)旨在找到一个最佳的超平面,使得大多数数据点在这个超平面附近。SVR的目标是最小化以下损失函数:

min ⁡ w , b , ξ 1 2 ∣ ∣ w ∣ ∣ 2 + C ∑ i = 1 n ( ξ i + ξ i ∗ ) \min_{w,b,\xi} \frac{1}{2}||w||^2 + C \sum_{i=1}^{n} (\xi_i + \xi_i^*) w,b,ξmin21∣∣w2+Ci=1n(ξi+ξi)

其中, ξ i \xi_i ξi ξ i ∗ \xi_i^* ξi分别表示预测值与真实值的偏差。约束条件为:

y i − ( w ⋅ x i + b ) ≤ ϵ + ξ i y_i - (w \cdot x_i + b) \leq \epsilon + \xi_i yi(wxi+b)ϵ+ξi
( w ⋅ x i + b ) − y i ≤ ϵ + ξ i ∗ (w \cdot x_i + b) - y_i \leq \epsilon + \xi_i^* (wxi+b)yiϵ+ξi

通过这种方式,SVR能够在给定的 ϵ \epsilon ϵ容忍度内进行有效的回归分析。

6.6 核方法

核方法是支持向量机的另一个重要概念,通过使用核函数,我们可以在不显式计算特征的情况下,完成复杂的分类和回归任务。核方法的核心思想是,通过计算核函数而非直接特征,降低计算复杂度,提高模型的灵活性。

在实际应用中,我们可以使用各种核函数来处理不同类型的数据,调整模型的超参数,以达到最佳的分类或回归效果。

总结

本章详细介绍了支持向量机的基本原理和应用,包括间隔与支持向量、对偶问题、核函数、间隔与正则化、支持向量量回归和核方法。支持向量机凭借其强大的性能和灵活性,在许多实际场景中得到了广泛应用。希望本章的内容能够帮助你深入理解支持向量机的工作机制与应用潜力。


http://www.ppmy.cn/news/1542781.html

相关文章

Notepad++如何同时检索多个关键字

Notepad如何同时检索多个关键字 在 Notepad 中同时检索多个关键字,可以使用以下步骤: 打开 Notepad:启动 Notepad 编辑器。打开查找窗口: 按 Ctrl F 打开查找窗口。 使用正则表达式: 在查找窗口中,切换到…

安全见闻(4)

操作系统和驱动程序 前面我说过这两个也可以称为软件程序的一种,很多程序都是杂糅在一块的 操作系统 注册表(在linux里没有)linux有类似的,windows才有(注册表) 防火墙 自启动 计划任务 事件日志 内核驱动…

Android Handler消息机制完全解析-IdleHandler和epoll机制(四)

Android 消息机制Handler完全解析(一) Android 消息机制Handler完全解析(二) Android Handler消息机制-消息屏障(三) 经过前面的学习相信大家对Handler已经有了比较全面且深入的认识,我在写第一篇的时候就说过Handler相关的知识远比我们想象的要多,到这…

如何将 HashiCorp Vault 与 Node.js 集成:安全管理敏感数据

在处理密码、API 密钥或个人用户信息等敏感数据时,安全存储它们至关重要。在源代码中硬编码机密或将其保存在纯文本文件中是一种危险的方法。这就是 HashiCorp Vault 发挥作用的地方。 Vault 是一个用于管理机密(例如凭证、API 密钥和敏感配置)的开源工具。 在本教程中,我将…

iview TreeSelect 异步加载子节点 编辑时不能正常回显

问题描述 因为分类数据太多,首次加载时间太长,和业务沟通改成异步加载子节点,解决了加载缓慢的问题,但编辑的时候回显就不能显示了,因为赋值的时候,下拉框数据中还没有加载已选中的项。该怎么办呢… 解决…

深度学习(五):语音处理领域的创新引擎(5/10)

一、深度学习在语音处理中的崛起 在语音处理领域,传统方法如谱减法、维纳滤波等在处理复杂语音信号时存在诸多局限性。这些方法通常假设噪声是平稳的,但实际噪声往往是非平稳的,导致噪声估计不准确。同时,为了去除噪声&#xff0…

Cursor零基础小白教程系列 - 创建你的第一个Cursor 项目

最适合小白零基础的Cursor教程 网站lookai.top相同作者,最新文章会在网站更新,欢迎收藏书签 创建你的第一个Cursor 项目 实操视频 概述 开始使用Cursor进行编程的第一步是创建或导入一个项目。本指南将帮助您了解如何在Cursor中创建新项目、导入现有项…

vscode 安装教程

双击vscode 安装包 同意,下一步 可以使用默认安装路径,也可以优化为这个 全选 取消勾选,点完成 在桌面创建一个空文件夹,拖动到vscode图标上 点击这个图标创建文件,注意必须以.py 结尾!&#xff0…