【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数

news/2024/12/31 0:34:36/

深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数

  • 4.1.2 激活函数
    • ReLU 函数
      • 参数化 ReLU
    • Sigmoid 函数
      • 背景
      • 绘制 sigmoid 函数
      • Sigmoid 函数的导数
    • Tanh 函数
      • Tanh 函数的导数
      • 总结

4.1.2 激活函数

激活函数(activation function)用于计算加权和并加上偏置,决定神经元是否被激活。它将输入信号转化为可微的输出,大多数激活函数是非线性的。激活函数是深度学习的基础,下面介绍几种常见的激活函数。

ReLU 函数

最受欢迎的激活函数是修正线性单元(Rectified Linear Unit, ReLU),它实现简单且在各种预测任务中表现优异。ReLU 提供了一种非常简单的非线性变换,定义为:


(4.1.4)

通俗地说,ReLU 通过将负值设为 0,仅保留正数。我们可以通过下列代码绘制 ReLU 函数的曲线来直观感受其行为。正如图中所示,ReLU 是分段线性的。

import torch
from d2l import torch as d2lx = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))

在这里插入图片描述

当输入为负时,ReLU 的导数为 0;当输入为正时,导数为 1。当输入值精确等于 0 时,ReLU 不可导,但我们通常忽略这种情况,假设导数为 0。我们可以绘制 ReLU 函数的导数曲线。

y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))

在这里插入图片描述

ReLU 的求导性质使得参数要么消失,要么通过,从而优化效果更好,缓解了神经网络中常见的梯度消失问题(将在后续章节介绍)。

参数化 ReLU

ReLU 有许多变体,其中包括参数化 ReLU(Parameterized ReLU, pReLU)。pReLU 为 ReLU 添加了一个线性项,使得即使输入为负,仍有信息可以传递:

pReLU ( x ) = max ⁡ ( 0 , x ) + α min ⁡ ( 0 , x ) . \text{pReLU}(x) = \max(0, x) + \alpha \min(0, x). pReLU(x)=max(0,x)+αmin(0,x).

Sigmoid 函数

对于定义域在 R \mathbb{R} R 中的输入,sigmoid 函数将输入变换为区间 ( 0 , 1 ) (0, 1) (0,1) 上的输出,因此 sigmoid 通常称为挤压函数(squashing function)。它将任意输入压缩到区间 ( 0 , 1 ) (0, 1) (0,1) 中的某个值,定义如下:


(4.1.6)

背景

在早期的神经网络中,科学家们通过 sigmoid 函数模拟生物神经元的激发和非激发。它是阈值单元的平滑可微近似,当输入低于某个阈值时输出接近 0,超过阈值时输出接近 1。由于 sigmoid 的平滑性和可导性,它在基于梯度的学习中得到广泛应用,特别是在将输出视为二元分类问题的概率时,仍然使用 sigmoid 作为输出层的激活函数。

然而,随着 ReLU 函数的引入,sigmoid 在隐藏层中的应用逐渐减少,因为 ReLU 更简单且更易于训练。在后续关于循环神经网络的章节中,我们将探讨如何使用 sigmoid 来控制时序信息流。

绘制 sigmoid 函数

我们可以通过代码绘制 sigmoid 函数曲线。注意,当输入接近 0 时,sigmoid 函数近似线性。

y = torch.sigmoid(x)
d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))

在这里插入图片描述

Sigmoid 函数的导数

sigmoid 函数的导数公式如下:


(4.1.7)

我们可以通过代码绘制 sigmoid 函数的导数曲线。注意,当输入为 0 时,sigmoid 函数的导数达到最大值 0.25;而当输入远离 0 时,导数逐渐趋近于 0。

# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))

在这里插入图片描述

这表明 sigmoid 函数在输入较大或较小时的梯度非常小,这导致在深层网络中可能会出现梯度消失问题。

Tanh 函数

与 sigmoid 函数类似,tanh(双曲正切)函数也可以将输入压缩到区间 ( − 1 , 1 ) (-1, 1) (1,1) 上。tanh 函数的公式如下:


(4.1.8)

我们可以通过代码绘制 tanh 函数。注意,当输入在 0 附近时,tanh 函数接近线性,且函数关于原点对称。

y = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))

在这里插入图片描述

Tanh 函数的导数

tanh 函数的导数为:


(4.1.9)

当输入接近 0 时,tanh 函数的导数接近最大值 1。类似于 sigmoid 函数,当输入远离 0 时,导数逐渐趋近于 0。我们可以绘制 tanh 函数的导数图像。

# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))

在这里插入图片描述

总结

我们已经了解了如何使用非线性激活函数(如 ReLU、sigmoid 和 tanh)来构建具有更强表达能力的多层神经网络。值得一提的是,如今借助开源的深度学习框架,只需几行代码即可快速构建模型,而在 20 世纪 90 年代,训练这些网络可能需要数千行 C 或 Fortran 代码。


http://www.ppmy.cn/news/1536693.html

相关文章

通过MySQL Workbench 将 SQL Server 迁移到GreatSQL

通过MySQL Workbench 将 SQL Server 迁移到GreatSQL 一、概述 MySQL Workbench 提供了可以将Microsoft SQL Server的表结构和数据迁移到 GreatSQL 的功能,此次将通过MySQL Workbench将SQL Server的数据迁移到GreatSQL。 本文章只是简单演示一下单张表的迁移&…

滚雪球学Oracle[3.2讲]:查询与数据操作基础

全文目录: 前言一、复杂查询的优化:索引与查询重写1.1 使用索引优化查询索引的原理索引类型索引的使用场景案例演示:创建和使用索引 1.2 查询重写技术常见的查询重写方法 1.3 查询计划分析案例演示:使用EXPLAIN查看查询计划 二、D…

销售团队管理全面指南:从结构到流程

“除非卖出东西,否则就不能叫生意。” ——Thomas Watson的这段话表明,无论您经营哪个行业,销售都应该成为企业最重要的部分。您可能拥有出色的产品,但真正重要的是如何销售它。为此,您需要一支出色的销售团队&#xf…

书生大模型实战(从入门到进阶)L3-彩蛋岛-InternLM 1.8B 模型 Android 端侧部署实践

目录 1 环境准备 1.1 安装rust 1.2 安装Android Studio 1.3 设置环境变量 2 转换模型 2.1 安装mlc-llm 2.2 (可选)转换参数 2.3 (可选)生成配置 2.4 (可选)上传到huggingface 2.5 (可选) 测试转换的模型 3 打包运行 3.1 修改配置文件 3.2 运行打包命令 3.3 创建签…

gyp ERR node-gyp失败处理

当前版本: node v16.20.2 pnpm 8.14.3 npm 8.19.4 python失败 可以在微软的应用商店安装python node-gyp安装了和node一样的版本,然后失败 │ Building: C:\Program Files\nodejs\node.exe D:\data\work_code\data\xiangm\node_modules\.pnpm\node-gyp7.1.2\n… │ gyp inf…

在掌控板中加载人教版信息科技教学指南中的educore库

掌控板中加载educore库 人教信息科技数字资源平台(https://ebook.mypep.cn/free)中的《信息科技教学指南硬件编程代码说明》文件中提到“本程序说明主要供教学参考。需要可编程主控板须支持运行MicroPython 脚本程序。希望有更多的主控板在固件中支持ed…

C语言中的文件操作(二)

C语言中的文件操作&#xff08;一&#xff09;-CSDN博客https://blog.csdn.net/Xiaodao12345djs/article/details/142746010?spm1001.2014.3001.5501 四、文件的顺序读写 1、fputc (字符输出函数/写) 将一个字符写入文件中 #include <stdio.h>int main() {FILE* pf fo…

构建高效水果购物平台:SpringBoot飘香网站案例

1系统概述 1.1 研究背景 如今互联网高速发展&#xff0c;网络遍布全球&#xff0c;通过互联网发布的消息能快而方便的传播到世界每个角落&#xff0c;并且互联网上能传播的信息也很广&#xff0c;比如文字、图片、声音、视频等。从而&#xff0c;这种种好处使得互联网成了信息传…