【Linux进程间通信】Linux匿名管道详解:构建进程间通信的隐形桥梁

news/2024/12/21 23:45:02/

📝个人主页🌹:Eternity._
⏩收录专栏⏪:Linux “ 登神长阶 ”
🌹🌹期待您的关注 🌹🌹

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

❀Linux进程间通信

  • 📒1. 进程间通信介绍
  • 📚2. 什么是管道
  • 📜3. 匿名管道
    • 🌞fork共享管道原理
    • 🌙结合文件描述符
    • ⭐站在内核角度
  • 📝4. 管道的读写情况与特点
    • 🎈管道的读写情况
    • 🎩管道的特性
  • 📖5. 总结


前言:当提及Linux系统中的进程间通信(IPC),管道(Pipes)无疑是最基础且广泛使用的一种机制。作为匿名通信的典范,管道为进程间数据交换提供了一个简单而有效的途径。在这个信息飞速传递的时代,掌握Linux管道的使用不仅是理解操作系统底层通信原理的关键一步,也是提升软件开发效率、构建复杂应用系统的必备技能

本篇文章将带您深入探索Linux进程间匿名通信的管道机制。我们将从管道的基本概念出发,逐步揭开其背后的工作原理,并通过实例演示如何在实际编程中创建、使用和维护管道。无论您是初学者,希望建立对Linux IPC的初步认识;还是经验丰富的开发者,渴望在现有基础上进一步精进;亦或是对系统编程充满好奇的学习者,渴望深入了解操作系统内部的奥秘,本文都将为您提供丰富的知识和实用的指导

我们将详细介绍管道的创建过程、数据读写操作、管道的生命周期管理以及常见的使用场景。 同时,我们还会探讨管道在并发编程中的表现,分析其在多进程环境下的行为特性,并提供相应的优化策略。通过理论与实践相结合的方式,相信您能够全面掌握Linux进程间匿名通信的管道技术,为您的软件开发之路增添一份坚实的力量

让我们一同踏上这段探索之旅,揭开Linux管道的神秘面纱,领略其在进程间通信中的独特魅力!


📒1. 进程间通信介绍

进程间通信(Interprocess communication,IPC)是指在不同的进程之间传播或交换信息。由于进程的用户空间是互相独立的,一般而言不能互相访问,但存在一些双方都可以访问的介质或系统空间来实现通信

  • 原理: 进程间通信主要依赖于双方都可以访问的介质或系统空间。这些介质包括共享内存区、系统空间以及双方都可以访问的外设(如磁盘上的文件、数据库中的表项等)。然而,广义上的通过这些方式进行的通信一般不算作“进程间通信”。进程间通信更常见的是通过一组编程接口来实现,这些接口允许程序员协调不同的进程,使它们能在一个操作系统里同时运行,并相互传递、交换信息

  • 必要性: 即使只有一个用户发出要求,也可能导致一个操作系统中多个进程的运行。这些进程之间必须互相通信,以协调它们的行为和共享资源。进程间通信使得一个程序能够在同一时间里处理许多用户的要求


📚2. 什么是管道

  • 管道是Unix中最古老的进程间通信的形式
  • 我们把从一个进程连接到另一个进程的一个数据流称为一个“管道”

在这里插入图片描述

管道分为:匿名管道和命名管道,本篇我们主要来了解一下匿名管道


📜3. 匿名管道

匿名管道是Linux中一种非常基础的进程间通信(IPC)方式,其本质上是一种内存级的文件,专门用于父子进程间或具有亲缘关系的进程间的通信

创建匿名管道

#include <unistd.h>//功能:创建一无名管道
//原型
int pipe(int fd[2]);//参数
//fd:文件描述符数组,其中fd[0]表示读端, fd[1]表示写端
//返回值:成功返回0,失败返回错误代码

在这里插入图片描述
实例代码:

#include <iostream>
#include <cassert>
#include <cstring>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>#define MAX 1024using namespace std;int main()
{// 1. 建立管道int pipefd[2] = {0};int n = pipe(pipefd);assert(n == 0);// 定义 n(void)n;// 查看文件描述符cout << "pipefd[0]: " << pipefd[0] << ", pipefd[1]: " << pipefd[1] << endl;// 2. 创建子进程pid_t id = fork();if(id < 0){perror("fork");return 1;}// 子写,父读,// 3. 关闭父子不需要的fd,形成单向通信的管道if(id == 0){// 子进程close(pipefd[0]);// 写入int cnt = 10;while(cnt){char message[MAX];snprintf(message, sizeof(message), "hello father, I am child, pid: %d, cnt: %d", getpid(), cnt);cnt--;write(pipefd[1], message, strlen(message));cout << "writing cnt: " << cnt << endl;}exit(0);}// 父进程close(pipefd[1]);// 读取char buffer[MAX];while(true){ssize_t n = read(pipefd[0], buffer, sizeof(buffer)-1);if(n == 0){cout << "child qiut, read tail" << endl;break;}else if(n > 0){buffer[n] = 0; // '\0', 当作字符串cout << getpid() << ": " << "child say: " << buffer << " to me!" << endl;}}pid_t rid = waitpid(id, nullptr, 0);if(rid == id){cout << "wait seccess" << endl;}return 0;
}

🌞fork共享管道原理

在这里插入图片描述


🌙结合文件描述符

在这里插入图片描述


⭐站在内核角度

在这里插入图片描述


📝4. 管道的读写情况与特点

🎈管道的读写情况

  1. 正常情况,如果管道没有数据了,读端必须等待,直到有数据为止(写端写入数据)
  2. 正常情况,如果管道被写满了,写端必须等待,直到有空间为止(读端读走数据)

我们让读端一直读,而写端在写入部分文件后让它sleep一段时间,我们这是来观察一下读端的情况

代码示例:(C++):

if(id == 0)
{// 子进程close(pipefd[0]);// 写入int cnt = 10000;while(cnt){char message[MAX];snprintf(message, sizeof(message), "hello father, I am child, pid: %d, cnt: %d", getpid(), cnt);cnt--;write(pipefd[1], message, strlen(message));// 在正常写入一次后,sleep,父进程读取不做修改sleep(4);       }exit(0);
}

在这里插入图片描述


当我们的管道被写满了的时候,写端就不能在进行写入了,我们必须等待读端将数据读取走才能继续往管道里面写入,我们让读端休眠上几面,让写端一直写

代码示例:(C++):

if(id == 0)
{// 子进程close(pipefd[0]);// 写入int cnt = 0;while(true){char message[MAX];snprintf(message, sizeof(message), "hello father, I am child, pid: %d, cnt: %d", getpid(), cnt);cnt++;write(pipefd[1], message, strlen(message));// 在正常写入一次后,sleep,父进程读取不做修改cout << "writing cnt: " << cnt << endl; 	}exit(0);
}

在这里插入图片描述


  1. 写端关闭,读端一直读取,读端会读到read返回值为0,表示读到文件结尾
  2. 读端关闭,写端一直写入,0S会直接杀掉写端进程,通过想目标进程发送SIGPIPE(13)信号,终止目标进程

写端关闭代码示例:(C++):

if(id == 0)
{// 子进程close(pipefd[0]);// 写入int cnt = 0;while(true){char message[MAX];snprintf(message, sizeof(message), "hello father, I am child, pid: %d, cnt: %d", getpid(), cnt);cnt++;write(pipefd[1], message, strlen(message));//sleep(2);cout << "writing cnt: " << cnt << endl;// 在写入两次时,我们将子进程的写入关闭if(cnt == 2){close(pipefd[1]);break;}}exit(0);
}// 父进程
close(pipefd[1]);// 读取
char buffer[MAX];
while(true)
{sleep(4);ssize_t n = read(pipefd[0], buffer, sizeof(buffer)-1);// 当 n == 0 时,代表read已经读到文件结尾了if(n == 0){cout << "child qiut, read tail" << endl;break;}else if(n > 0){buffer[n] = 0; // '\0', 当作字符串cout << getpid() << ": " << "child say: " << buffer << " to me!" << endl;}
}

我们这样设计代码,先让子进程写入之后,关闭掉pipefd[1],然后观察父进程是否会打印,我们需要的代码

在这里插入图片描述


读端关闭代码示例:(C++):

// 父进程
close(pipefd[1]);// 读取
char buffer[MAX];
while(true)
{//sleep(4);ssize_t n = read(pipefd[0], buffer, sizeof(buffer)-1);if(n == 0){cout << "child qiut, read tail" << endl;break;}else if(n > 0){buffer[n] = 0; // '\0', 当作字符串cout << getpid() << ": " << "child say: " << buffer << " to me!" << endl;}cout << "father return val(n)" << n << endl;sleep(1);// 打印一次后,我们退出循环    break;
}// 关闭 pipefd[0],停止读取
cout << "close point read" << endl;
close(pipefd[0]);sleep(3);int status = 0;
pid_t rid = waitpid(id, &status, 0);
if(rid == id)
{cout << "wait seccess, exit sig: " << (status&0x7f) << endl;
}

注意:当前状态码 & 0x7f可以查看到最后的退出码

在这里插入图片描述


🎩管道的特性

管道的5种特性

  1. 匿名管道,可以允许具有血缘关系的进程之间进行进程间通信,常用与父子,仅限于此
  2. 匿名管道,默认给读写端要提供同步机制
  3. 面向字节流的入
  4. 管道的生命周期是随进程的
  5. 管道是单向通信的,半双工通信的一种特殊情况

在了解完管道的这些情况和特征后,我们可以利用管道来写一个简单的线程池

线程池代码链接


📖5. 总结

在探索Linux进程间匿名通信的管道机制这一旅程的尾声,我们不禁对Linux操作系统的精妙设计和强大功能有了更深一层的理解。管道,作为进程间通信的基础而又高效的工具,不仅简化了数据在不同进程间的流动过程,还极大地促进了多任务并发执行的灵活性

通过本文的学习,我们见证了管道从创建到使用的全过程,理解了其背后的工作原理,并掌握了如何在实际编程中利用管道来实现进程间的数据交换。从pipe()函数的调用,到文件描述符的分配,再到数据的读写操作,每一个步骤都蕴含着Linux系统设计的智慧与匠心

但Linux提供的进程间通信机制远不止于此。命名管道、消息队列、共享内存、信号量以及套接字等多种IPC方式,各自拥有独特的优势和适用场景。在未来的学习与实践中,我们可以继续深入探索这些机制,以更加灵活多样的方式实现进程间的协同工作

让我们以更加饱满的热情和坚定的信心,继续前行在Linux系统编程的学习之路上!

在这里插入图片描述

希望本文能够为你提供有益的参考和启示,让我们一起在编程的道路上不断前行!
谢谢大家支持本篇到这里就结束了,祝大家天天开心!

在这里插入图片描述


http://www.ppmy.cn/news/1536666.html

相关文章

android navigation 用法详细使用

Navigation 的关键概念 1、Navigation Graph: 定义了应用内的所有导航目的地以及它们之间的连接。 2、NavHost: 一个 UI 元素&#xff0c;用于承载当前的导航目的地。 3、NavController: 管理目的地之间的导航。 4、Destination: 导航图中的一个节点&#xff0c;用户导航到该节…

5.k8s:helm包管理器,prometheus监控,elk,k8s可视化

目录 一、Helm 包管理器 1.什么是 Helm 2.安装Helm &#xff08;3&#xff09;Helm常用命令 &#xff08;4&#xff09;目录结构 &#xff08;5&#xff09;使用Helm完成redis主从搭建 二、Prometheus集群监控 1.监控方案 2.Prometheus监控k8s 三、ELK日志搜集 1.el…

【JWT安全】portswigger JWT labs 全解

目录 1.利用有缺陷的 JWT 签名验证 ①接受任意签名 lab1:通过未验证的签名绕过 JWT 身份验证 ②接受无签名的token lab2:通过有缺陷的签名验证来绕过 JWT 身份验证 2.暴力破解密钥 ①使用hashcat lab3:通过弱签名密钥绕过 JWT 身份验证 3.JWT 标头参数注入 ①通过 jwk…

外卖小程序的研究与开发+ssm(lw+演示+源码+运行)

摘 要 随着科技的进步&#xff0c;微信小程序慢慢进入了生活当中&#xff0c;由于轻便快捷&#xff0c;方便使用&#xff0c;基于微信这个大平台&#xff0c;使得小程序飞速发展&#xff0c;趋于成熟&#xff0c;因此&#xff0c;针对用户对外卖点餐方面的需求&#xff0c;特开…

UE5运行时动态加载场景角色动画任意搭配-角色及动画(一)

通过《MMD模型及动作一键完美导入UE5》系列文章,我们可以把外部场景、角色、动画资产导入UE5,接下来我们将实现运行时动态加载这些资产,并任意组合搭配。 1、骨骼动画复用 1、大部分模型骨骼是不通用的,比如这些裙子也是有骨骼的,属于模型特有的,但是对于动画来说,很多…

“网络安全等级保护测评入门:基础概念与重要性“

网络安全等级保护测评&#xff08;简称“等保测评”&#xff09;是依据国家网络安全等级保护制度&#xff0c;对信息系统安全等级进行评估和评定的过程。它是提高信息系统安全性、保障信息安全的重要手段。以下是关于等保测评的基础概念与重要性的详细解读&#xff1a; 一、等…

go发送邮件:在Go语言中实现发邮件的教程?

go发送邮件的教程指南&#xff1f;怎么使用Go语言发送电子邮件&#xff1f; Go语言&#xff0c;作为一种简洁、高效且并发性强的编程语言&#xff0c;自然也提供了丰富的库来支持邮件发送功能。AokSend将详细介绍如何在Go语言中实现发送邮件的功能&#xff0c;帮助你快速掌握这…

招联金融秋招内推2025

【投递方式】 直接扫下方二维码&#xff0c;或点击内推官网https://wecruit.hotjob.cn/SU61025e262f9d247b98e0a2c2/mc/position/campus&#xff0c;使用内推码 igcefb 投递&#xff09; 【招聘岗位】 后台开发 前端开发 数据开发 数据运营 算法开发 技术运维 软件测试 产品策…