20241008深度学习动手篇

news/2024/12/22 2:11:23/

文章目录

    • 1.如何写一个神经网络进行训练?
      • 1.1创建一个子类,搭建你需要的神经网络结构
      • 1.2 加载数据集
      • 1.3 自定义一些指标评估函数
      • 1.4训练
      • 1.5 结果展示
    • 2.参考文献

在这里插入图片描述

1.如何写一个神经网络进行训练?

1.1创建一个子类,搭建你需要的神经网络结构

# @File: 241008LeNet.py
# @Author: chen_song
# @Time: 2024/10/8 上午8:31import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 进行卷积操作以后,nn.Conv2d(1,6,kernel_size=5,padding=2),nn.Sigmoid(),nn.AvgPool2d(2,stride=2),nn.Conv2d(6,16,kernel_size=5),nn.Sigmoid(),nn.AvgPool2d(2,stride=2),nn.Flatten(),nn.Linear(16*5*5,120),nn.Sigmoid(),nn.Linear(120,84),nn.Sigmoid(),nn.Linear(84,10)
)
print(net)
print("===============================")
X = torch.rand(size=(1,1,28,28),dtype=torch.float32)
Y  = X.copy_(X)
for layer in net:X = layer(X)print(layer.__class__.__name__,X.shape)print("============================")
# 输入给定以后,会进行一系列张量乘法计算
A = net(Y)
# print the last result
print(A)

result below:

Sequential( (0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1),
padding=(2, 2)) (1): Sigmoid() (2): AvgPool2d(kernel_size=2,
stride=2, padding=0) (3): Conv2d(6, 16, kernel_size=(5, 5),
stride=(1, 1)) (4): Sigmoid() (5): AvgPool2d(kernel_size=2,
stride=2, padding=0) (6): Flatten(start_dim=1, end_dim=-1) (7):
Linear(in_features=400, out_features=120, bias=True) (8): Sigmoid()
(9): Linear(in_features=120, out_features=84, bias=True) (10):
Sigmoid() (11): Linear(in_features=84, out_features=10, bias=True) )
=============================== Conv2d torch.Size([1, 6, 28, 28]) Sigmoid torch.Size([1, 6, 28, 28]) AvgPool2d torch.Size([1, 6, 14,
14]) Conv2d torch.Size([1, 16, 10, 10]) Sigmoid torch.Size([1, 16, 10,
10]) AvgPool2d torch.Size([1, 16, 5, 5]) Flatten torch.Size([1, 400])
Linear torch.Size([1, 120]) Sigmoid torch.Size([1, 120]) Linear
torch.Size([1, 84]) Sigmoid torch.Size([1, 84]) Linear torch.Size([1,
10])
============================ tensor([[-0.2278, -0.5057, -0.6303, 0.1526, -0.1510, -0.1933, -0.3120, -0.7823,
0.4070, -0.0717]], grad_fn=)

1.2 加载数据集

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

打断点调试:
在这里插入图片描述在这里插入图片描述
你会发现:
train_iter和test_iter都是一个torch.utils.dataLoader对象,里面包含几个成员变量,住关键的是dataset对象以及sample对象,仔细研究你就会发现,为啥需要数据加载器了,因为你用神经网络进行训练,数据格式总得对吧,再就是要给个label吧,也就是目标值target吧,所以有余力朋友可以自己设计一个数据加载器…

1.3 自定义一些指标评估函数

def evaluate_accuracy_gpu(net, data_iter, device=None):  # @save"""使用GPU计算模型在数据集上的精度"""if isinstance(net, nn.Module):net.eval()  # 设置为评估模式if not device:device = next(iter(net.parameters())).device# 正确预测的数量,总预测的数量metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:if isinstance(X, list):# BERT微调所需的(之后将介绍)=== 自然语言处理X = [x.to(device) for x in X]else:X = X.to(device)y = y.to(device)metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]

注意一下里面net.eval()和net.train()

1.4训练

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):"""用GPU训练模型(在第六章定义)"""def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)optimizer = torch.optim.SGD(net.parameters(), lr=lr)loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数metric = d2l.Accumulator(3)net.train()for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)l.backward()optimizer.step()with torch.no_grad():metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop()train_l = metric[0] / metric[2]train_acc = metric[1] / metric[2]if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None))test_acc = evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

1.5 结果展示

在这里插入图片描述

2.参考文献

[1]王辉,张帆,刘晓凤,等.基于DarkNet-53和YOLOv3的水果图像识别[J].东北师大学报(自然科学版),2020,52(04):60-65.DOI:10.16163/j.cnki.22-1123/n.2020.04.010.
[2]王治国,曹爽,管海燕,等.基于改进SSD的城市地下排水管道缺陷识别算法[J].测绘工程,2024,33(05):7-13.DOI:10.19349/j.cnki.issn1006-7949.2024.05.002.
[3]杨继雯.基于深度学习的监控视频中人员异常行为识别技术[D].西安工业大学,2024.DOI:10.27391/d.cnki.gxagu.2024.000829.


http://www.ppmy.cn/news/1536305.html

相关文章

疾风大模型气象,基于气象数据打造可视化平台

引言 随着气象数据的广泛应用,越来越多的行业依赖天气预报与气候分析来做出决策。从农业、航空、能源到物流,气象信息无时不刻影响着各行各业的运作。然而,气象数据本身复杂且多样,如何将这些数据转化为直观、易于理解的图形和信…

[单master节点k8s部署]31.ceph分布式存储(二)

Ceph配置 Ceph集群通常是一个独立的存储集群,可以部署在 Kubernetes 集群之外。Ceph 提供分布式存储服务,能够通过 RADOS、CephFS、RBD(块存储)、和 RGW(对象存储)等方式与 Kubernetes 集成。即使 Ceph 部…

【网络】用网线连接两台电脑实现远程桌面

目录 1. 准备工作1.1 硬件要求1.2 软件要求 2. 网络连接2.1 直接连接2.2 通过路由器连接 3. 配置IP地址3.1 设置IP地址3.2 检查连接 4. 启用远程桌面4.1 启用远程桌面4.2 添加用户4.3 防火墙设置 5. 远程连接5.1 使用远程桌面连接5.2 使用快捷方式 6. 常见问题解决7. 额外建议结…

JVM(Java Virtual Machine) 详解

1. JVM 内存区域划分 一个 Java 写的程序,跑起来就得到了一个 Java 进程(资源分配的基本单位) JVM 上面运行的字节码指令 1) 程序计数器(比较小的空间),保存了下一条要执行的指令的地址 这个不是 CPU 的…

APP自动化搭建与应用

APP自动化环境搭建 用于做APP端UI自动化,adb连接手机设备。 需要的工具java编辑器:jdk、Android-sdk软件开发工具组、appium的python客户端、nodes.js、夜神模拟器、apk包、uiautomatorviewer 第一步:安装sdk,里面包含建立工具bu…

信息学奥赛使用的编程IDE:Dev-C++ 安装指南

信息学奥赛(NOI)作为全国性的编程竞赛,要求参赛学生具备扎实的编程能力,而熟练使用适合的编程工具则是学习与竞赛的基础。在众多编程环境中,Dev-C IDE 因其简洁、轻量、支持C编程等特点,成为许多参赛者的常…

项目配置说明

文章目录 零、预安装0.1 在Ubuntu 系统中安装 git0.2 在Ubuntu 系统中安装 cmake 一、下载 vscode 并安装相应扩展1.1 下载 vscode1.2 安装扩展 二、git 项目三、git 提交流程3.1 确定要提交的代码 四、git 拉新流程 零、预安装 0.1 在Ubuntu 系统中安装 git 在 Ubuntu 桌面&…

ML 系列:【13 】— Logistic 回归(第 2 部分)

文章目录 一、说明二、挤压方法三、Logistic 回归中的损失函数四、后记 一、说明 ​ 在这篇文章中,我们将深入研究 squashing 方法,这是有符号距离方法(第 12节)的一种很有前途的替代方案。squashing 方法通过提供增强的对异常值…