【动态规划-最长公共子序列(LCS)】力扣97. 交错字符串

news/2024/12/22 14:28:13/

给定三个字符串 s1、s2、s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。

两个字符串 s 和 t 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空
子字符串:

s = s1 + s2 + … + sn
t = t1 + t2 + … + tm
|n - m| <= 1
交错 是 s1 + t1 + s2 + t2 + s3 + t3 + … 或者 t1 + s1 + t2 + s2 + t3 + s3 + …
注意:a + b 意味着字符串 a 和 b 连接。

示例 1:
在这里插入图片描述
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbcbcac”
输出:true

示例 2:
输入:s1 = “aabcc”, s2 = “dbbca”, s3 = “aadbbbaccc”
输出:false

示例 3:
输入:s1 = “”, s2 = “”, s3 = “”
输出:true

提示:
0 <= s1.length, s2.length <= 100
0 <= s3.length <= 200
s1、s2、和 s3 都由小写英文字母组成

法1:二维数组动态规划

class Solution {
public:bool isInterleave(string s1, string s2, string s3) {int n1 = s1.size(), n2 = s2.size(), n3 = s3.size();if(n1 + n2 != n3){return false;}vector<vector<int>> f(n1+1, vector<int>(n2+1, false));f[0][0] = true;for(int i = 0; i <= n1; i++){for(int j = 0; j <= n2; j++){int p = i + j - 1;if(i > 0){f[i][j] |= (f[i-1][j] && s1[i-1] == s3[p]);}if(j > 0){f[i][j] |= (f[i][j-1] && s2[j-1] == s3[p]);}}}return f[n1][n2];}
};

时间复杂度和空间复杂度都是 O(n1n2)。

这个动态规划的核心思想就是,定义一个动态数组f[i][j],他的含义是s1的前i个字符和s2的前j个字符是否可以构成s3的前i+j个字符的交叉字符串。

在局部方面,也就是子问题上,我们判断f[i][j]是否能构成true情况:
一种情况是s1的第i个字符等于s3的第i+j个字符时,要保证f[i-1][j]是否也为true,如果两个条件都满足,那么f[i][j]为true。需要注意的是在这里,举个例子,f[1][1]的含义是s1的前1个字符和s2的前一个字符,也就是s1[0],s2[0]。而s1的第i个字符,在这里就是s1[i-1]。定义一个整型p为i+j-1,用来表示s3的第i+j个字符。

第二种情况同理,也就是s2的第j个字符等于s3的第i+j个字符,这时候也要保证f[i][j-1]也为true,f[i][j]才为true。

以上两种情况有一种成立,则f[i][j]为true。

法2:滚动数组优化

class Solution {
public:bool isInterleave(string s1, string s2, string s3) {auto f = vector <int> (s2.size() + 1, false);int n = s1.size(), m = s2.size(), t = s3.size();if (n + m != t) {return false;}f[0] = true;for (int i = 0; i <= n; ++i) {for (int j = 0; j <= m; ++j) {int p = i + j - 1;if (i > 0) {f[j] &= (s1[i - 1] == s3[p]);}if (j > 0) {f[j] |= (f[j - 1] && s2[j - 1] == s3[p]);}}}return f[m];}
};

时间复杂度:O(nm),两重循环的时间代价为 O(nm)。
空间复杂度:O(m),即 s2的长度。

滚动数组的优化,我们观察方法一,可以观察到f[i][j]所需要参考的状态只有上面的f[i-1][j]和左边的f[i][j-1],所以我们可以使用滚动数组的方式来省略掉i。

我们只需要一个一维的数组f[j],在计算的时候,f[j] &= (s1[i - 1] == s3[p]);和之前的f[i][j] |= (f[i-1][j] && s1[i-1] == s3[p])含义相同,我们由于已经j+1,这时候的f[j]实际上已经储存着上一行的第j列第信息,也就是之前的f[i-1][j]。

然后由于f[j-1]我们已经计算过,他保存的信息是这一行的j-1列的布尔值,所以我们f[j] |= (f[j - 1] && s2[j - 1] == s3[p])来替代之前的f[i][j] |= (f[i][j-1] && s2[j-1] == s3[p])

滚动数组在空间上进行了优化,同时也说明了他损失了一些信息,他始终只储存着计算的最新一行的值,由于我们只需要最后一次计算的f[i][j],所以滚动数组在解决这个问题上是一个有效的优化。


http://www.ppmy.cn/news/1536036.html

相关文章

微信步数C++

题目&#xff1a; 样例解释&#xff1a; 【样例 #1 解释】 从 (1,1) 出发将走 2 步&#xff0c;从 (1,2) 出发将走 4 步&#xff0c;从 (1,3) 出发将走 4 步。 从 (2,1) 出发将走 2 步&#xff0c;从 (2,2) 出发将走 3 步&#xff0c;从 (2,3) 出发将走 3 步。 从 (3,1) 出发将…

LeetCode-LCR 012. 寻找数组的中心下标【双指针】

题目 给你一个整数数组 nums &#xff0c;请计算数组的 中心下标 。 数组 中心下标 是数组的一个下标&#xff0c;其左侧所有元素相加的和等于右侧所有元素相加的和。 如果中心下标位于数组最左端&#xff0c;那么左侧数之和视为 0 &#xff0c;因为在下标的左侧不存在元素。…

python爬虫案例——处理验证码登录网站(12)

文章目录 前言1、任务目标2、网页分析3、代码编写4、第三方验证码识别平台(超级鹰)前言 我们在爬取某些网站数据时,可能会遇到必须登陆才能获取网页内容的情况,而大部分网站登录都需要输入验证码才能登录成功,所以接下来我将会通过实际案例来讲解如何实现验证码登录网站 1…

Vue3+TS项目 - ref和useTemplateRef获取组件实例

在Vue2中&#xff0c;子组件使用的是选项式 API &#xff0c;被引用的组件实例和该子组件的 this 完全一致&#xff0c;这意味着父组件对子组件的每一个属性和方法都有完全的访问权。这使得在父组件和子组件之间创建紧密耦合的实现细节变得很容易&#xff0c;当然也因此&#x…

在Docker中运行微服务注册中心Eureka

1、Docker简介&#xff1a; 作为开发者&#xff0c;经常遇到一个头大的问题&#xff1a;“在我机器上能运行”。而将SpringCloud微服务运行在Docker容器中&#xff0c;避免了因环境差异带来的兼容性问题&#xff0c;能够有效的解决此类问题。 通过Docker&#xff0c;开发者可…

前缀和(6)_和可被k整除的子数组_蓝桥杯

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 前缀和(6)_和可被k整除的子数组 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 …

Maven、Git

1. Maven 安装 &#xff08;2024.6.23&#xff09;最新版MAVEN的安装和配置教程&#xff08;超详细&#xff09;_maven安装-CSDN博客 2. 配置IDEA和Maven的关联 1. 单个关联 &#xff08;每新建一个项目都要配一次&#xff0c;不推荐&#xff09; 配置maven home path&#…

树莓派 AI 摄像头(Raspberry Pi AI Camera)教程

系列文章目录 前言 人们使用 Raspberry Pi 产品构建人工智能项目的时间几乎与我们生产 Raspberry Pi 的时间一样长。随着我们发布功能越来越强大的设备&#xff0c;我们能够支持的原生应用范围也在不断扩大&#xff1b;但无论哪一代产品&#xff0c;总会有一些工作负载需要外部…