opencv实战项目(三十):使用傅里叶变换进行图像边缘检测

news/2024/12/22 0:20:10/

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 一,什么是傅立叶变换?
  • 二,图像处理中的傅立叶变换:
  • 三,傅里叶变换进行边缘检测:


一,什么是傅立叶变换?

傅里叶变换的目的是可将时域(即时间域)上的信号转变为频域(即频率域)上的信号,随着域的不同,对同一个事物的了解角度也就随之改变,因此在时域中某些不好处理的地方,在频域就可以较为简单的处理。
在这里插入图片描述

(w代表频率,t代表时间,e^-iwt为复变函数)
傅里叶变换认为一个周期函数(信号)包含多个频率分量,任意函数(信号)f(t)可通过多个周期函数(基函数)相加而合成。从物理角度理解傅里叶变换是以一组特殊的函数(三角函数)为正交基,对原函数进行线性变换,物理意义便是原函数在各组基函数的投影。
简单来说,傅里叶变换是将输入的信号分解成指定样式的构造块。例如,首先通过叠加具有不同频率的两个或更多个正弦函数而生成信号f(x),之后,仅查看f(x)的图像缺无法了解使用哪种或多少原始函数来生成f(x)。
这就是傅立叶变换最神奇的地方。将f(x)函数通过一个傅立叶变换器,我们就可以得到一个新的函数F(x)。F(x)的是最初生成f(x)函数的频率图。因此,通过查看F(x)我们就可以得到用于生成f(x)函数的原始频率。实际上,傅立叶变换可以揭示信号的重要特征,即其频率分量。
例如下图,该图中有f(x)函数合成时的两个不同频率的原函数和对应的傅里叶变换结果F(x)
在这里插入图片描述
生成该图片的代码如下:

Fs = 150.0; #采样率
Ts = 1.0 / Fs; #采样间隔
t = np.arange(0,1,Ts)#时间向量
ff1 = 5; #信号频率1 
ff2 = 10; #信号2的频率
y = np.sin(2 * np.pi * ff1 * t)+ np.sin(3 * np.pi * ff2 * t)

从图中可以看出,由于原始函数是由两个不同频率的输入函数组成的,因此经过傅立叶变换后的相应频率图显示了两个不同频率的尖峰。

二,图像处理中的傅立叶变换:

现在我们知道了傅里叶变换对信号处理的作用。它将输入信号从时域转换到频域。
但是它在图像处理中有什么用?它将输入图像从空间域转换为频域。换句话说,如果要在进行傅立叶变换后绘制图像,我们将看到的只是高频和低频的频谱图。高频偏向图像中心,而低频偏向周围。具体形式如下图所示。
在这里插入图片描述

import numpy as np 
import cv2 from matplotlib 
import pyplot as plt 
img = cv2.imread('scenery.jpg', 0) 
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20 *    np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) 
plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray') 
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 2), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('After FFT'), plt.xticks([]), plt.yticks([])

获取了图像的快速傅里叶变换后,就可以在频域上对图像进行处理,在频域图像中心处发现低频,而在周围散布了高频,因此我们可以创建一个掩码数组,该掩码数组的中心是一个圆,其余全部为零。当将此掩码数组作用于原始图像时,所得图像将仅具有低频。由于高频对应于空间域中的边缘,这样就可以实现图像中的边缘检测。这个掩码数组就时HPF滤波器。

我们可以通过如下代码生成HPF滤波器


mask = np.ones((rows, cols, 2), np.uint8) 
r = 80 center = [crow, ccol] 
x, y = np.ogrid[:rows, :cols] 
mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r

三,傅里叶变换进行边缘检测:

图像中的边缘通常由高频组成。因此,在对图像进行FFT(快速傅立叶变换)后,我们需要对FFT变换后的图像应用高通滤波器。该滤波器会阻止所有低频,仅允许高频通过。最后,我们对经过了滤波器的图像进行逆FFT,就会得到原始图像中一些明显的边缘特征。接下来,我们使用汽车的图像进行此实验,这个过程的代码如下所示:


rows, cols = img.shape 
crow, ccol = int(rows / 2), int(cols / 2) # center 
# Circular HPF mask, center circle is 0, remaining all ones 
mask = np.ones((rows, cols, 2), np.uint8) 
r = 80 center = [crow, ccol] 
x, y = np.ogrid[:rows, :cols] 
mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r 
# apply mask and inverse DFT 
fshift = dft_shift * mask 
fshift_mask_mag = 2000 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) 
f_ishift = np.fft.ifftshift(fshift) 
img_back = cv2.idft(f_ishift) 
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray') 
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 2), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('After FFT'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 3), plt.imshow(fshift_mask_mag, cmap='gray') plt.title('FFT + Mask'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 4), plt.imshow(img_back, cmap='gray') plt.title('After FFT Inverse'), plt.xticks([]), plt.yticks([])
plt.show()

效果:
在这里插入图片描述
可以看出,高通滤波器阻止了所有的低频信号,并且仅允许高频通过。由于边缘通常是由高频信号构成的,因此可以在最后的图像中找到原图像的边缘信息。


http://www.ppmy.cn/news/1534290.html

相关文章

JavaScript 数组方法

数组(array)是按次序排列的一组值。每个值的位置都有编号(从0开始)&#xff0c;整个数组用方括号表示。两端的方括号是数组的标志。 var a["a","b","c"]; 除了在定义时赋值&#xff0c;数组也可以先定义后赋值。 var arr[];arr[1]"a"…

分治算法:谈一谈大规模计算框架 MapReduce 中的分治思想

分治算法:谈一谈大规模计算框架 MapReduce 中的分治思想 在当今大数据时代,处理大规模数据的需求日益增长。MapReduce 作为一种广泛应用的大规模计算框架,其核心思想正是分治算法。本文将深入探讨 MapReduce 中的分治思想,并通过具体案例进行说明。 一、分治算法概述 分…

【JavaScript】数组函数汇总

JavaScript数组函数是处理和操作数据的基础&#xff0c;对于JavaScript开发至关重要。函数式编程方法&#xff0c;如map()、filter()和reduce()&#xff0c;能够提高代码的简洁性和功能性。数据不可变性是现代JavaScript开发中的一个重要概念&#xff0c;函数如concat()和slice…

C语言 | Leetcode C语言题解之第454题四数相加II

题目&#xff1a; 题解&#xff1a; struct hashTable {int key;int val;UT_hash_handle hh; };int fourSumCount(int* A, int ASize, int* B, int BSize, int* C, int CSize, int* D, int DSize) {struct hashTable* hashtable NULL;for (int i 0; i < ASize; i) {for (…

二值图像的面积求取的两种方法及MATLAB实现

一、引言 面积在数字图像处理中经常用到&#xff0c;在MATLAB中&#xff0c;计算二值图像的面积通常可以通过两种主要方法实现&#xff1a;遍历法和直接利用bwarea函数。下面将分别介绍这两种方法的原理和相应的MATLAB代码示例。 二、遍历法计算二值图像面积的原理和MATLAB代码…

物联网智能项目研究

物联网&#xff08;IoT&#xff09;作为当今数字化转型的重要推动力&#xff0c;正在改变我们的生活方式和工作模式。从智能家居、智慧城市到工业自动化&#xff0c;物联网技术的应用正在实现人们对智能生活的向往。本文将探讨一个具体的物联网智能项目&#xff0c;通过实际操作…

Stm32的bootloader无法使用问题

Stm32的bootloader无法使用问题 用不了一键下载电路 首先简单地对此处涉及的内容进行介绍:如果stm32的BOOT0引脚为低电平时,系统从FLASH中启动,而如果BOOT0引脚为高电平,且BOOT1为低电平时,系统从自举程序(bootloader)中启动. 我在自制照相机设计中加入了ISP一键下载电路,如…

ES索引备份

#!/usr/bin/env python # -*- coding:utf-8 -*-""" /************************************************************** **************************************************************/ 获取ES中所有的文档数据 filename data_es.py python3 ""&q…