算法笔记(五)——分治

news/2024/12/22 0:10:53/

文章目录

  • 算法笔记(五)——分治
  • 快排
    • 颜色分类
    • 排序数组
    • 数组中的第K个最大元素
    • 库存管理 III
  • 归并
    • 排序数组
    • 交易逆序对的总数
    • 计算右侧小于当前元素的个数
    • 翻转对

算法笔记(五)——分治

分治算法字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序)…

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

步骤

  • 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题
  • 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
  • 合并:将各个子问题的解合并为原问题的解

经典的分治算法有二分搜索,归并排序,快速排序,。

快排

颜色分类

题目:颜色分类

在这里插入图片描述
思路

  • 初始化三个指针:
  • i遍历数组;
  • left左侧均为0
  • right右侧均为2
  • 遍历过程中遇到0swap(nums[++left],nums[i++])
  • 遇到1i++,不进行交换
  • 遇到2swap(nums[--right], nums[i])
  • 循环条件i < right

C++代码

class Solution 
{
public:void sortColors(vector<int>& nums) {for(int i = 0, left = -1, right = nums.size(); i < right; ){if(nums[i] == 0) swap(nums[++left], nums[i++]);else if(nums[i] == 1)i++;elseswap(nums[--right], nums[i]);}}
};

排序数组

题目:排序数组

在这里插入图片描述
思路

  • 我们将数组划分为三块,再来实现快排,将数组划分为三个部分:小于、等于、大于基准值;
  • <key,=key,>key

三路划分:减少重复元素的递归处理(相同元素过多的话,可以减小递归深度)、避免不必要的交换(将相同元素聚集在一起,避免了不必要的交换操作)

C++代码

class Solution 
{
public:int getKey(vector<int>& nums, int left, int right){return nums[rand() % (right - left + 1) + left];}void qsort(vector<int>& nums, int l, int r){if(l >= r) return;int key = getKey(nums, l, r);int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}qsort(nums, l, left);qsort(nums, right, r);}vector<int> sortArray(vector<int>& nums) {srand(time(NULL));qsort(nums, 0, nums.size() - 1);return nums;}
};

数组中的第K个最大元素

题目:数组中的第K个最大元素

在这里插入图片描述

思路

常规解法,利用堆排,但时间复杂度不为O(N)

快速选择算法(快排)O(N)

  • 三路划分,将数组划分为三块;
  • 大于key的元素个数为c,等于key的元素个数为b,小于key元素个数为a
  • c >= k,则第k大元素在右侧,继续在右侧递归寻找第k大元素;
  • b + c >= k,则直接返回基准元素,即为第k大元素;
  • 若上述均不满足,则第k大元素在左侧,继续在左侧递归寻找第k大元素,此时k = k - b - c

C++代码

class Solution 
{
public:// 数组中获得随机值 int getKey(vector<int>& nums, int l, int r) {return nums[rand() % (r - l + 1) + l];}int qsort(vector<int>& nums, int l, int r, int k){if(l == r) return nums[l];// 随机选择基准元素int key = getKey(nums, l, r);// 根据基准元素将数组分为三块int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}int b = right - 1 - (left + 1) + 1; // 等于key的数量int c = r - right + 1; // 大于key的数量if(c >= k) return qsort(nums, right, r, k);else if((b + c) >= k) return key;else return qsort(nums, l, left, k - b - c);}int findKthLargest(vector<int>& nums, int k)             {srand(time(NULL));return qsort(nums, 0, nums.size() - 1, k);}
};

库存管理 III

题目:库存管理 III

在这里插入图片描述
思路

和上题想法一致,使用快速选择的算法,使时间复杂度达到O(n)

C++代码


```class Solution 
{
public:void qsort(vector<int>& nums, int l, int r, int cnt){if(l >= r) return ;int key = nums[rand() % (r - l + 1) + l];int i = l, left = l - 1, right = r + 1;while(i < right){if(nums[i] < key) swap(nums[++left], nums[i++]);else if(nums[i] == key) i++;else swap(nums[--right], nums[i]);}int a = left - l + 1;int b = right - 1 - (left + 1) + 1;if(a >= cnt) qsort(nums, l, left, cnt);else if((a + b) >= cnt) return;else qsort(nums, right, r, cnt - a - b);}vector<int> inventoryManagement(vector<int>& stock, int cnt) {srand(time(NULL));qsort(stock, 0, stock.size() - 1, cnt);return {stock.begin(), stock.begin() + cnt};}
};

归并

排序数组

题目:排序数组

在这里插入图片描述C++代码

class Solution 
{// 归并vector<int> tmp;
public:void mergeSort(vector<int>& nums, int l, int r){if(l >= r) return ;// 计算中间位置int mid = (l + r) >> 1;// 对左右两部分进行归并排序mergeSort(nums, l, mid);mergeSort(nums, mid + 1, r);// 归并合并两个有序部分int i = l, j = mid + 1, k = 0;while(i <= mid && j <= r)tmp[k++] = (nums[i] <= nums[j]) ? nums[i++] : nums[j++];while(i <= mid) tmp[k++] = nums[i++];while(j <= r) tmp[k++] = nums[j++];// 拷贝回原数组for(int i = l; i <= r; i++){nums[i] = tmp[i - l];}} vector<int> sortArray(vector<int>& nums) {tmp.resize(nums.size());mergeSort(nums, 0, (int)nums.size() - 1);return nums;}
};

交易逆序对的总数

题目:交易逆序对的总数

在这里插入图片描述
思路
当我们将两个已排序的子数组合并成一个有序数组时,如果左侧子数组中的某个元素大于右侧子数组中的某个元素,那么左侧子数组中该元素之后的所有元素(包括该元素本身)都将与右侧子数组中的该元素形成逆序对。因此,我们可以通过计算这样的元素对数来统计逆序对的总数

C++代码

class Solution 
{int tmp[50010];
public:int reversePairs(vector<int>& record) {return mergeSort(record, 0, record.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0; int ret = 0;// 中间,将数组分为两部分int mid = left + right >> 1;// [left, mid], [mid + 1, right]// 左边个数 + 排序 + 右边个数 + 排序ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);// 一左一右个数int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]){tmp[i++] = nums[cur1++];}else{ret += mid - cur1 + 1;  // 统计逆序对个数tmp[i++] = nums[cur2++];                }}// 处理剩余元素while (cur1 <= mid) tmp[i++] = nums[cur1++];while (cur2 <= right) tmp[i++] = nums[cur2++];// 拷贝回原数组for (int i = left; i <= right; ++i)nums[i] = tmp[i - left];return ret;}
};

计算右侧小于当前元素的个数

题目:计算右侧小于当前元素的个数

在这里插入图片描述
思路

这⼀道题的解法与求数组中的逆序对的解法是类似的,记录每⼀个元素的右边有多少个元素⽐⾃⼰⼩

归并排序的过程中,元素的下标是会跟着变化的,因此我们需要⼀个辅助数组,来将数组元素和对应的下标绑定在⼀起归并,也就是再归并元素的时候,顺势将下标也转移到对应的位置上

C++代码

class Solution 
{vector<int> ret;vector<int> index; // 记录当前元素的元素下标int tmpNums[500010];int tmpIndex[500010];
public:vector<int> countSmaller(vector<int>& nums) {int n = nums.size();ret.resize(n);  index.resize(n);// 初始化tmpIndexfor(int i = 0; i < n; i++)  index[i] = i; mergeSort(nums, 0, n - 1);return ret;}void mergeSort(vector<int>& nums, int left, int right){   if(left >= right) return ;// 根据中间元素划分区间int mid = (left + right) >> 1;// [left, mid]、[mid + 1, right]// 处理左右两部分mergeSort(nums, left, mid);mergeSort(nums, mid + 1, right);// 处理一左一右,降序数组int cur1 = left, cur2 = mid + 1, i = 0;while(cur1 <= mid && cur2 <= right){if(nums[cur1] <= nums[cur2]) {tmpNums[i] = nums[cur2];tmpIndex[i++] = index[cur2++];          }else {ret[index[cur1]] += right - cur2 + 1;tmpNums[i] = nums[cur1];tmpIndex[i++] = index[cur1++];  }}    // 处理剩余数组while(cur1 <= mid){tmpNums[i] = nums[cur1];tmpIndex[i++]=index[cur1++];}while(cur2 <= right){tmpNums[i] = nums[cur2];tmpIndex[i++]=index[cur2++];}// 还原for(int j = left; j <= right; j++){nums[j] = tmpNums[j - left];index[j] = tmpIndex[j - left];}}
};

翻转对

题目:翻转对

在这里插入图片描述
思路

翻转对和逆序对的定义⼤同⼩异,逆序对是前⾯的数要⼤于后⾯的数。⽽翻转对是前⾯的⼀个数要⼤于后⾯某个数的两倍。因此,我们依旧可以⽤归并排序的思想来解决这个问题

C++代码

class Solution 
{int tmp[50010];
public:int reversePairs(vector<int>& nums) {return mergeSort(nums, 0, nums.size() - 1);}int mergeSort(vector<int>& nums, int left, int right){if(left >= right) return 0;int ret = 0;int mid = (left + right) >> 1;ret += mergeSort(nums, left, mid);ret += mergeSort(nums, mid + 1, right);int cur1 = left, cur2 = mid + 1, i = left;while(cur1 <= mid) // 降序{while(cur2 <= right &&  nums[cur2] >= nums[cur1] / 2.0)cur2++;if(cur2 > right)break;ret += right - cur2 + 1;cur1++;}cur1 = left, cur2 = mid + 1;while(cur1 <= mid && cur2 <= right)tmp[i++] = nums[cur1] <= nums[cur2] ? nums[cur2++] : nums[cur1++];while(cur1 <= mid) tmp[i++] = nums[cur1++];while(cur2 <= right) tmp[i++] = nums[cur2++];for(int j = left; j <= right; j++)nums[j] = tmp[j];return ret;}
};

http://www.ppmy.cn/news/1534034.html

相关文章

06 Docker容器内部管理的终极指南:掌握核心技巧与最佳实践

文章目录 06 Docker容器内部管理的终极指南:掌握核心技巧与最佳实践一 docker client 查看容器内部日志1.1 全部日志查看1.2 实时进行日志查看1.3 实时进行日志查看-显示详细时间戳1.4 日志查看-后5行1.5 日志查看-后5行二 docker client 查看容器内部运行的进程三 从docker h…

conda虚拟环境安装包、依赖同一管理

在 Python 的虚拟环境中&#xff0c;每个环境都是独立的&#xff0c;这意味着即使两个环境需要相同的库&#xff0c;它们也会分别安装各自的副本。这样做是为了避免不同项目之间相互影响&#xff0c;确保每个项目都有一个干净且隔离的环境。 方法一&#xff1a;使用 Conda 的共…

Docker 进入容器运行命令的详细指南

Docker 进入容器运行命令的详细指南 Docker 是一个开源的容器化平台&#xff0c;广泛应用于开发和生产环境中。它允许开发者打包应用程序及其依赖项到容器中&#xff0c;并能够在不同的平台上快速部署和运行。容器通常是独立且隔离的&#xff0c;但在开发、调试或维护过程中&a…

STM32自动下载电路分享及注意事项

文章目录 简介ISP下载启动配置 USB转串口芯片CH340C手动isp下载自动isp下载RTS、DTR电平变化分析注意事项 简介 在嵌入式开发中&#xff0c;使用STM32下载程序&#xff0c;可以通过仿真器下载&#xff0c;也可以通过串口下载。在stm32串口下载时&#xff0c;我们需要手动配置启…

加密与安全_TOTP 一次性密码生成算法

文章目录 PreTOTP是什么TOTP 算法工作原理TOTP 生成公式TOTP 与 HOTP 的对比Code生成TOTP验证 TOTP使用场景小结 TOTP 与 HOTP 的主要区别TOTP 与 HOTP应用场景比较TOTP 与 HOTP安全性分析 Pre 加密与安全_HTOP 一次性密码生成算法 https://github.com/samdjstevens/java-tot…

计算机毕业设计 基于Python的无人超市管理系统的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

CSP-JS 复赛复习 习题记录——字符串(东方博宜OJ)

家人们&#xff0c;这不要考CSP复赛了嘛&#xff0c;就做了几个复习题单&#xff0c;和大家分享分享&#xff0c;也就随便做做&#xff0c; 望大家多多关照&#xff01; 网址&#xff1a;东方博宜OJ - 字符串 题单 食用说明&#xff1a;这次的题 太简单了 还不算太难&#xff0…

MySQL安全加固

MySQL所使用的 SQL 语言是用于访问数据库的最常用标准化语言。MySQL 软件采用了双授权政策&#xff0c;分为社区版和商业版&#xff0c;由于其体积小、速度快、总体拥有成本低&#xff0c;尤其是开放源码这一特点&#xff0c;一般中小型网站的开发都选择 MySQL 作为网站数据库。…