云计算SLA响应时间的matlab模拟与仿真

news/2024/12/21 22:19:33/

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

      用matlab模拟,一个排队理论。输入一堆包,经过buffer(一个或者几个都行)传给server,这些包会在buffer里面进行排队,采取FIFO的排序方法。

本课题用到了一个公式
q(t)=max(0,q(t-1)+a(t)-1)
       意思是现在在buffer里面排队的数据包的个数 是等于 前一时间排队的数据包的个数加上新到达的数据包的个数,减去离开的也就是被处理的数据包的个数。值随时间变化。
       在传输的过程中,要用Poisson Random Variable的公式生成随机的traffic。
      最后输出的结果要求是q(t)的柱状图,主要结果是要比较最开始每个包之间的时间,和经过buffer还有traffic影响之后到达的每个包之间的时间差。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

(完整程序运行后无水印)

3.核心程序


%绘制每一个时刻下,FIFO中的数据包的数量q(t)的函数变化
figure;
subplot(211);
bar(FIFO_DATA);
grid on;
legend('Q(t)整体显示效果');
axis([1,10000,0,1.2*max(FIFO_DATA)]);
title('显示某一次的仿真结果');
subplot(212);
bar(FIFO_DATA);
grid on;
legend('Q(t)局部显示效果');
axis([4000,4050,0,1.2*max(FIFO_DATA(4000:4050))]);
title('显示某一次的仿真结果');%比较最开始每个包之间的时间,和经过buffer还有traffic影响之后到达的每个包之间的时间差。
figure
plot(0:Num_FIFO_Package,[0 abs(Package_Infor(1,Package_Index)-Package_Infor(4,Package_Index))]);
ylabel('The time');
xlabel('The Package');
legend('时间差');
grid on;title('显示某一次的仿真结果');%显示整体的平均效果
%显示整体的平均效果
%首先计算平均值
for i = 1:size(Package_Infor,1)for j = 1:size(Package_Infor,2)for m = 1:SIMU_NUMtmps1(i,j,m) = Package_Infor_Montecarlo{m}(i,j); endend
end
Package_Infor_Montecarlo_avg = zeros(size(Package_Infor,1),size(Package_Infor,2));
for j = 1:size(Package_Infor,2)Package_Infor_Montecarlo_avg(1,j) = mean(tmps1(1,j,:));Package_Infor_Montecarlo_avg(2,j) = mean(tmps1(2,j,:));Package_Infor_Montecarlo_avg(3,j) = mean(tmps1(3,j,:));Package_Infor_Montecarlo_avg(4,j) = mean(tmps1(4,j,:));Package_Infor_Montecarlo_avg(5,j) = mean(tmps1(5,j,:));    
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:length(Package_Index)for m = 1:SIMU_NUMtmps2(i,m) = Package_Index_Montecarlo{m}(i); end
end
for i = 1:length(Package_Index)Package_Index_Montecarlo_avg(i) = mean(tmps2(i,:));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:length(FIFO_DATA)for m = 1:SIMU_NUMtmps3(i,m) = FIFO_DATA_Montecarlo{m}(i); end
end
for i = 1:length(FIFO_DATA)FIFO_DATA_Montecarlo_avg(i) = mean(tmps3(i,:));
endfigure
subplot(121);
plot([0 Package_Infor_Montecarlo_avg(1,Package_Index_Montecarlo_avg)],0:Num_FIFO_Package);
hold on;
plot([0 Package_Infor_Montecarlo_avg(4,Package_Index_Montecarlo_avg)],0:Num_FIFO_Package,'r-.');
hold off;
xlabel('The time');
ylabel('The Package');
legend('到达时间','离开时间');
grid on;
axis square;
title('显示整体的平均效果');subplot(122);
plot([0 Package_Infor_Montecarlo_avg(1,Package_Index_Montecarlo_avg)],0:Num_FIFO_Package);
hold on;
plot([0 Package_Infor_Montecarlo_avg(4,Package_Index_Montecarlo_avg)],0:Num_FIFO_Package,'r-.');
hold off;
axis([40,45,3500,4000]);
xlabel('The time');
ylabel('The Package');
legend('到达时间(局部显示效果)','离开时间(局部显示效果)');
grid on;
axis square;
title('显示整体的平均效果');figure;
subplot(121);
plot(1:Num_FIFO_Package,Package_Infor_Montecarlo_avg(3,Package_Index_Montecarlo_avg),'r-*');
hold on;
plot(1:Num_FIFO_Package,Package_Infor_Montecarlo_avg(2,Package_Index_Montecarlo_avg)+Package_Infor_Montecarlo_avg(3,Package_Index_Montecarlo_avg),'k-');
hold off;
legend('等待时间','处理所需要的时间');
grid on;
axis square;
title('显示整体的平均效果');subplot(122);
plot(1:Num_FIFO_Package,Package_Infor_Montecarlo_avg(3,Package_Index_Montecarlo_avg),'r-*');
hold on;
plot(1:Num_FIFO_Package,Package_Infor_Montecarlo_avg(2,Package_Index_Montecarlo_avg)+Package_Infor_Montecarlo_avg(3,Package_Index_Montecarlo_avg),'k-');
hold off;
axis([4000,4200,0,1.2*max(Package_Infor_Montecarlo_avg(3,4000:4200))]);
legend('等待时间(局部显示效果)','处理所需要的时间(局部显示效果)');
grid on;
axis square;
title('显示整体的平均效果');%绘制每一个时刻下,FIFO中的数据包的数量q(t)的函数变化
figure;
subplot(211);
bar(FIFO_DATA_Montecarlo_avg);
grid on;
legend('Q(t)整体显示效果');
axis([1,10000,0,1.2*max(FIFO_DATA_Montecarlo_avg)]);
title('显示整体的平均效果');
subplot(212);
bar(FIFO_DATA_Montecarlo_avg);
grid on;
legend('Q(t)局部显示效果');
axis([4000,4050,0,1.2*max(FIFO_DATA_Montecarlo_avg(4000:4050))]);
title('显示整体的平均效果');%比较最开始每个包之间的时间,和经过buffer还有traffic影响之后到达的每个包之间的时间差。
figure
plot(0:Num_FIFO_Package,[0 abs(Package_Infor_Montecarlo_avg(1,Package_Index_Montecarlo_avg)-Package_Infor_Montecarlo_avg(4,Package_Index_Montecarlo_avg))]);
ylabel('The time');
xlabel('The Package');
legend('时间差');
grid on;title('显示某一次的仿真结果');
30_001m

4.本算法原理

       服务级别协议(Service Level Agreement, SLA)是云服务提供商与其客户之间达成的一种正式协议,定义了服务质量的各种指标,如可用性、性能、支持等。其中,响应时间是指从用户发起请求到收到响应的时间间隔,它是衡量用户体验和系统性能的关键指标之一。在云计算环境中,确保快速且一致的响应时间对于维持高质量的服务至关重要。

响应时间受多种因素影响,包括但不限于:

网络延迟:数据在网络中传输所需的时间。
处理时间:服务器处理请求所需的时间。
队列等待时间:如果存在多个并发请求,新请求可能需要排队等待。
资源利用率:CPU、内存等硬件资源的使用情况直接影响处理速度。
软件效率:应用程序的设计和实现也会影响其执行效率。

       为了更准确地理解和预测响应时间,可以采用一些数学模型来进行分析。这里介绍两种常用的模型:M/M/1排队模型和Little's Law。

       M/M/1排队模型是一种经典的排队论模型,适用于描述具有单个服务台且到达和服务过程均服从泊松分布的情况。假设以下参数:

      Little's Law 是排队论中的一个基本定理,它提供了一个简单但强大的工具来关联三个关键变量:L(系统中的平均请求数量)、λ(到达率)以及 W(每个请求在系统中的平均停留时间)。其表达式为:

        综上所述,云计算SLA中的响应时间是一个涉及众多因素的综合性问题。通过对相关数学模型的研究与应用,不仅可以帮助我们深入理解系统行为,还能指导实践操作以达到最优效果。随着技术进步及市场需求变化,未来还将有更多创新方法被提出以进一步提升云计算服务质量。

5.完整程序

VVV


http://www.ppmy.cn/news/1533939.html

相关文章

5 apache poi实现excel的动态下拉框功能

excel下拉框 RequestMapping("xiala")public void xiala(HttpServletResponse response){String fileName "僵尸表";try{response.setContentType("application/vnd.openxmlformats-officedocument.spreadsheetml.sheet");response.setCharact…

小程序兼容问题

【微信小程序】安卓兼容问题,scroll-view上拉导致input输入框上移 引用:https://blog.csdn.net/krico233/article/details/127491690 当一个scroll-view占据全屏高度(100vh)并包含input表单时,输入框聚焦会导致光标上移但输入框本身位置不变…

我博客网站又遭受CC攻击了,记录一下

2024.9.29凌晨4点攻击开始,攻击目标是我的图床tc.zeruns.tech和博客blog.zeruns.tech,图床用的cdn是多吉云融合CDN,流量被刷了20GB左右就触发峰值关闭CDN了,HTTPS请求次数被刷了1.1亿次,因为设置了QPS,实际…

Oracle数据库物理结构操作管理

实验步骤 (1)查询数据库初始化参数中参数名包含sga的参数的名称、值和描述信息。 SQL> select name,value,description from V$PARAMETER where name like %sga%; (2)设置sga_max_size的大小为1G SQL> alter system set sg…

ab plc1756连接Profinet 转 EtherNet/IP 网关进行数据交互

Profinet转EtherNet/IP网关在服装工厂中起着至关重要的作用。在服装生产过程中,往往会涉及到多种不同品牌、不同类型的设备,这些设备可能采用不同的通信协议。而Profinet转EtherNet/IP网关就为解决这一问题提供了有效的方案。 据统计,在使用…

OpenCV C++霍夫圆查找

OpenCV 中的霍夫圆检测基于 霍夫变换 (Hough Transform),它是一种从边缘图像中识别几何形状的算法。霍夫圆检测是专门用于检测图像中的圆形形状的。它通过将图像中的每个像素映射到可能的圆参数空间,来确定哪些像素符合圆形状。 1. 霍夫变换的原理 霍夫…

MongoDB mongoose 的 save、insert 和 create 方法的比较

目录 save 方法 insert 方法 create 方法 使用会话和事务 总结 在本文中,我们将介绍 MongoDB 中使用 mongoose 操作 数据库时的三种常见方法:save、insert 和 create。这些方法可以用于将数据存储到 MongoDB 数据库中,并且在一定程度上具…

【Python】ftfy 使用指南:修复 Unicode 编码问题

ftfy(fixes text for you)是一个专为修复各种文本编码错误而设计的 Python 工具。它的主要目标是将损坏的 Unicode 文本恢复为正确的 Unicode 格式。ftfy 并非用于处理非 Unicode 编码,而是旨在修复因为编码不一致、解码错误或混合编码导致的…