机器学习常用的评价指标原理和代码

news/2024/11/17 1:34:19/

        最近面试的时候,很多面试官问道了我项目中的一些评价指标的算法和原理,我觉得这确实也是一个很重要的内容,所以趁这个机会综合起来一块复习一下,在刷力扣的时候也不能忘记项目最常用的内容嘛。当然还包括一些深度学习的例如我项目中目标检测和nlp算法的我会在之后更新。

总体代码我已经放入代码库,大家自取哦,希望能给大家带来一些帮助。

--------------------------------------------------------

一、回归任务评价指标

均方误差 (MSE)

原理:衡量预测值与真实值之间差异的平方的平均值,越小表示模型越准确。

公式:

根均方误差 (RMSE)

原理:RMSE是MSE的平方根,提供与数据原始单位相同的误差度量。

公式

平均绝对误差 (MAE)

原理:计算所有预测误差的绝对值并取平均,反映预测的准确性。

公式

R² (决定系数)

原理:表示模型解释的变异比例,值在0到1之间,越接近1表示模型效果越好。

公式

为残差平方和为总平方和

平均绝对百分比误差 (MAPE)

原理:计算误差的绝对值与真实值的比率的平均值,反映相对误差。

公式

最大误差 (Max Error)

原理:表示预测值与真实值之间的最大绝对误差,反映模型在最坏情况下的预测能力。

公式

二、分类任务评价指标

准确率 (Accuracy)

原理:正确预测的样本数量占总样本数量的比例。

公式

其中,TP为真阳性,TN为真阴性。

精确率 (Precision)

原理:预测为正类的样本中,真正为正类的比例。

公式

召回率 (Recall)

原理:实际为正类的样本中,正确预测为正类的比例。

公式

F1-score

原理:精确率和召回率的调和平均数,综合考虑模型的准确性和完整性。

公式

ROC曲线和AUC

原理:ROC曲线通过绘制真正率(TPR)和假正率(FPR)之间的关系来评估模型性能。AUC则表示曲线下面积,越大表示模型性能越好。

公式

TPR: (TPR(真正率)和召回率(Recall)在二分类任务中是同义词,通常可以互换使用。它们都表示模型在所有实际为正类的样本中,正确预测为正类的比例。)

FPR:

以上所有的机器学习相关的代码我都传到了我的一个仓库里,各位大佬有需求的话可以去我的仓库查看感谢感谢


http://www.ppmy.cn/news/1531328.html

相关文章

WPF 中的线程池

WPF 中的线程池 在 WPF 中,虽然应用程序主要运行在 UI 线程上,但我们可以使用 线程池 来执行后台任务而不会阻塞 UI 线程。WPF 中常用的线程池是 .NET 线程池,可以通过 ThreadPool 类或 Task 来管理后台任务。以下是 WPF 中如何使用线程池及…

虚幻蓝图Ai随机点移动

主要函数: AI MoveTo 想要AI移动必须要有 导航网格体边界体积 (Nav Mesh Bounds Volume) , 放到地上放大 , 然后按P键 , 可以查看范围 然后创建一个character类 这样连上 AI就会随机运动了 为了AI移动更自然 , 取消使用控制器旋转Yaw 取消角色移动组件 的 使用控制器所需的…

SQL进阶技巧:如何计算块熵?

目录 0 信息量定义 信息熵 1 块熵定义 2 问题描述 ​3 数据准备 4 问题分析 5 小结 想要进一步了解SQL这门艺术语言的,可以订阅我的专栏数字化建设通关指南,将在该专栏进行详细解析。专栏 原价99,现在活动价39.9,按照阶梯式…

Tomcat 乱码问题彻底解决

1. 终端乱码问题 找到 tomcat 安装目录下的 conf ---> logging.properties .修改ConsoleHandler.endcoding GBK (如果在idea中设置了UTF-8字符集,这里就不需要修改) 2. CMD命令窗口设置编码 参考:WIN10的cmd查看编码方式&am…

大模型-模型预训练-模型参数量计算

一、说明 当前主流大模型架构为因果解码器架构以下参数量计算以LLaMA为例假设解码器有L层、词表大小为V 二、参数量组成部分及计算 1、输入嵌入层【VH】 词表大小为V,每个单次映射到一个H维的向量,且输入嵌入层只有一层,因此有VH个参数 …

基于SpringBoot+Vue+MySQL的旅游推荐管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 随着社会的快速发展和人民生活水平的显著提高,旅游已成为人们休闲娱乐的重要方式。然而,面对海量的旅游信息和多样化的旅游需求,如何高效地管理和推荐旅游资源成为了一个亟待解决的问题。因此…

[001-03-007].第28节:SpringBoot整合Redis:

6.1.Redis的介绍: 1.Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。2.它支持多种类型的数据结构,如 字符串(strings), 散…

uni-app快速入门

目录 一、什么是 uni-app二、快速创建 uni-app 项目1.创建 uni-app2.运行 uni-app 三、uni-app 相对传统 H5 的变化1.网络模型的变化2.文件类型变化3.文件内代码架构的变化4.外部文件引用方式变化5.组件/标签的变化6.js的变化(1)运行环境从浏览器变成v8引…