深度学习500问——Chapter14:超参数调整(1)

news/2024/9/21 20:19:52/

文章目录

14.1 写在前面

14.2 超参数概念

14.2.1 什么是超参数,参数和超参数的区别

14.2.2 神经网络中包含哪些超参数

14.2.3 为什么要进行超参数调优

14.2.4 超参数的重要性顺序

14.2.5 部分超参数如何影响模型性能

14.2.6 部分参数合适的范围


14.1 写在前面

关于训练深度学习模型最难的事情之一是你要处理的参数的数量。无论是从网络本身的层宽(宽度)、层数(深度)、连接方式,还是损失函数的超参数设计和调试,亦或者是学习率、批样本数量、优化器参数等等。这些大量的参数都会有网络模型最终的有效容限直接或间接的影响。面对如此众多的参数,如果我们要一一对其优化调整,所需的无论是时间、资源都是不切实际的。结果证实一些超参数比其他的更为重要,因此认识各个超参数的作用和其可能会造成的影响是深度学习训练中必不可少的一项重要技能。

超参数调整可以说是深度学习中理论和实际联系最重要的一个环节。目前,深度学习仍存在很多不可解释的部分,如何设计优化出好的网络可以为深度学习理论的探索提供重要的支持。超参数调整一般分为手动调整和自动优化超参数两种。读者可先浏览思维导图,本章节不会过多阐述所有超参数的详细原理,如果需要了解这部分,您可以翻阅前面的基础章节或者查阅相关文献资料。当然,下面会讲到的一些超参数优化的建议是根据笔者们的实践以及部分文献资料得到认知建议,并不是非常严格且一定有效的,很多研究者可能会很不同意某些的观点或有着不同的直觉,这都是可保留讨论的,因为这很依赖于数据本身情况。

14.2 超参数概念

14.2.1 什么是超参数,参数和超参数的区别

区分两者最大的一点就是是否通过数据来进行调整,模型参数通常是有数据来驱动调整,超参数则不需要数据来驱动,而是在训练前或者训练中人为的进行调整的参数。例如卷积核的具体核参数就是指模型参数,这是由数据驱动的。而学习率则是人为i而来进行调整的超参数。这里需要注意的是,通常情况下卷积核数量、卷积核尺寸这些也是超参数,注意与卷积核的核参数区分。

14.2.2 神经网络中包含哪些超参数

通常可以将超参数分为三类:网络参数、优化参数、正则化参数。

网络参数:可指网络层与层之间的交互方式(相加、相乘或者串接等)、卷积核数量核卷积核尺寸、网络层数(也称深度)和激活函数等。

优化参数:一般指学习率(learning rate)、批样本数量(batch size)、不同优化器的参数以及部分损失函数的可调参数。

正则化:权重衰减系数,丢弃比率(dropout)。

14.2.3 为什么要进行超参数调优

本质上,这是模型优化寻找最优解和正则项之间的关系。网络模型优化调整的目的是为了寻找到全局最优解(或者相比更好的局部最优解),而正则项又希望模型尽量拟合到最优。两者通常情况下,存在一定的对立,但两者的目标是一致的,即最小化期望风险。模型优化希望最小化经验风险,而容易陷入过拟合,正则项用来约束模型复杂度。所以如何平衡两者之间的关系,得到最优或者较优的解就是超参数调整优化的目的。

14.2.4 超参数的重要性顺序

1、学习率,损失函数上的可调参数。在网络参数、优化参数、正则化参数中最重要的超参数可能就是学习率了。学习率直接控制着训练中网络梯度更新的量级,直接影响着模型的有效容限能力;损失函数上的可调参数,这些参数通常情况下需要结合实际的损失函数来调整,大部分情况下这些参数也能很直接的影响到模型的有效容限能力。这些损失一般可分为三类:

第一类辅助损失结合常见的损失函数,起到辅助优化特征表达的作用。例如度量学习中的Center loss,通常结合交叉熵损失伴随着一个权重完成一些特定的任务。这种情况下一般建议辅助损失值不高于或者不低于交叉熵损失值的两个数量级;

第二类多任务模型的多个损失函数,每个损失函数之间或独立或相关,用于各自任务,这种情况取决于任务之间本身的相关性,目前笔者并没有一个普适的经验由于提供参考;

第三类,独立损失函数,这类损失通常会在特定的任务有显著性的效果。例如RetinaNet中的focal loss,其中的参数γ,α,对最终的效果会产生较大的影响。这类损失通常论文中会给出特定的建议值。

2、批样本数量,动量优化器(Gradient Descent with Momentum)的动量参数β。批样本决定了数量梯度下降的方向。过小的批数量,极端情况下,例如batch size为1,即每个样本都去修正一次梯度方向,样本之间的差异越大越难以收敛。若网络中存在批归一化(batchnorm),batch size过小则更难以收敛,甚至垮掉。这是因为数据样本越少,统计量越不具有代表性,噪声也相应的增加。而过大的batch size,会使得梯度方向基本稳定,容易陷入局部最优解,降低精度。一般参考范围会取在[1: 1024]之间,当然这个不是绝对的,需要结合具体场景和样本情况;动量衰减参数β是计算梯度的指数加权平均数,并利用该值来更新参数,设置为0.9是一个常见且效果不错的选择。

3、Adam优化器的超参数、权重衰减系数、丢弃法比率(dropout)和网络参数。在这里说明下,这些参数重要性放在最后并不等价于这些参数不重要。而是表示这些参数在大部分实践中不建议过多尝试,例如Adam优化器中的β1,β2,ϵ,常设为 0.9、0.999、10−8就会有不错的表现。权重衰减系数通常会有个建议值,例如0.0005,使用建议值即可,不必过多尝试。dropout通常会在全连接层之间使用防止过拟合,建议比率控制在[0.2, 0.5]之间。

使用dropout时需要特别注意两点:

① 在RNN中,如果直接放在memory cell中,循环会放大噪声,扰乱学习。一般会建议放在输入和输出层;

② 不建议dropout后直接跟上batchnorm,dropout很可能影响batchnorm计算统计量,导致方差偏移,这种情况下会使得推理阶段出现模型完全垮掉的极端情况。

网络参数通常也属于超参数的范围内,通常情况下增加网络层数能增加模型的容限能力,但模型真正有效的容限能力还和样本数量和质量、层之间的关系等有关,所以一般情况下会选择先固定网络层数,调优到一定阶段或者有大量的硬件资源支持可以在网络深度上进行进一步调整。

14.2.5 部分超参数如何影响模型性能

超参数如何影响模型容量原因注意事项
学习率调至最优,提升有效容量过高或者过低的学习率,都会由于优化失败而导致降低模型有效容限学习率最优点,在训练的不同时间点都可能变化,所以需要一套有效的学习率衰减策略
损失函数部分超参数调至最优,提升有效容量损失函数超参数大部分情况都会可能影响优化,不合适的超参数会使即便是对目标优化非常合适的损失函数同样难以优化模型,降低模型有效容限。对于部分损失函数超参数其变化会对结果十分敏感,而有些则并不会太影响。在调整时,建议参考论文的推荐值,并在该推荐值数量级上进行最大最小值调试该参数对结果的影响。
批样本数量过大过小,容易降低有效容量大部分情况下,选择适合自身硬件容量的批样本数量,并不会对模型容限造成。在一些特殊的目标函数的设计中,如何选择样本是很可能影响到模型的有效容限的,例如度量学习(metric learning)中的N-pair loss。这类损失因为需要样本的多样性,可能会依赖于批样本数量。
丢弃法比率降低会提升模型的容量较少的丢弃参数意味着模型参数量的提升,参数间适应性提升,模型容量提升,但不一定能提升模型有效容限
权重衰减系数调至最优,提升有效容量权重衰减可以有效的起到限制参数变化的幅度,起到一定的正则作用
优化器动量调至最优,可能提升有效容量动量参数通常用来加快训练,同时更容易跳出极值点,避免陷入局部最优解。
模型深度同条件下,深度增加,模型容量提升同条件,下增加深度意味着模型具有更多的参数,更强的拟合能力。同条件下,深度越深意味着参数越多,需要的时间和硬件资源也越高。
卷积核尺寸尺寸增加,模型容量提升增加卷积核尺寸意味着参数量的增加,同条件下,模型参数也相应的增加。

14.2.6 部分参数合适的范围

超参数建议范围注意事项
初始学习率SGD: [1e-2, 1e-1]
momentum: [1e-3, 1e-2]
Adagrad: [1e-3, 1e-2]
Adadelta: [1e-2, 1e-1]
RMSprop: [1e-3, 1e-2]
Adam: [1e-3, 1e-2]
Adamax: [1e-3, 1e-2]
Nadam: [1e-3, 1e-2]
这些范围通常是指从头开始训练的情况。若是微调,初始学习率可在降低一到两个数量级。
损失函数部分超参数多个损失函数之间,损失值之间尽量相近,不建议超过或者低于两个数量级这是指多个损失组合的情况,不一定完全正确。单个损失超参数需结合实际情况。
批样本数量[1:1024]当批样本数量过大(大于6000)或者等于1时,需要注意学习策略或者内部归一化方式的调整。
丢弃法比率[0, 0.5]
权重衰减系数[0, 1e-4]
卷积核尺寸[7x7],[5x5],[3x3],[1x1], [7x1,1x7]


http://www.ppmy.cn/news/1528536.html

相关文章

SSMP+ajax实现广告系统的分页效果

文章目录 1.案例需求2.编程思路3.案例源码4.小结 1.案例需求 使用SSMPajax实现广告系统的分页效果,效果图如下: 2.编程思路 mapper层:定义一个接口,继承自BaseMapper,指定泛型为AdvInfo,这样MyBatis Pl…

【RabbitMQ 项目】服务端:数据管理模块之消息管理

文章目录 一.编写思路1.定义消息类2.定义消息持久化类3.定义队列消息管理类4.定义消息管理类 二.代码实践 一.编写思路 1.定义消息类 因为消息要在网络中传输,并且还要持久化到磁盘,所以使用 Protobuf 来定义,目的就是使用它的序列化反序列化…

MATLAB绘图:5.三维图形

三维图形 基本的三维绘图包括: 线型(Line)网格型(Mesh)区域型(Area)面型(Surface)方向矢量型(Direction)容积型(Volumetric&#xf…

项目测试用例:

项目概述 该项目是一款网上点餐系统,满足普通商家和普通用户的基本需求,主要有两大功能模块,分别是管理员模块(商家端)和用户模块(客户端)。系统供管理员登录和普通用户,登录进去会有…

系统架构设计师教程 第5章 5.4 软件测试 笔记

5.4 软件测试 5.4.1 测试方法 ★★★★★ 软件测试方法的分类有很多种, 以测试过程中程序执行状态为依据可分为静态测试 (Static Testing,ST) 和动态测试 (Dynamic Testing,DT); 以具体实现算法细节和系统内部结构的相关情况为根据可分黑盒测试、白盒测试和灰盒测…

蓝桥杯-基于STM32G432RBT6的LCD进阶(LCD界面切换以及高亮显示界面)

目录 一、页面切换内容详解 1.逻辑解释 2.代码详解 code.c(内含详细讲解) code.h main.c 3.效果图片展示 ​编辑 二、页面选项高亮内容详解 1.逻辑解释 2.读入数据 FIRST.第一种高亮类型 code.c(内含代码详解) code.…

大话C++:第11篇 类的定义与封装

1 类的定义 在C中,类的定义通常使用class关键字开始,后面紧跟类的名称。类可以包含数据成员(变量)和成员函数(方法)。 在C中,类可以更加详细地展开,包括数据成员(变量&…

springbootKPL比赛网上售票系统

基于springbootvue实现的KPL比赛网上售票系统 (源码L文ppt)4-068 4.2 系统结构设计 架构图是系统的体系结构,体系结构是体系结构体系的重要组成部分。KPL比赛网上售票系统的总体结构设计如图4-2所示。 图4-2 系统总体架构图 4.3数据…