WGAN算法

news/2024/11/15 1:42:01/

Wasserstein GAN (WGAN) 是一种改进的生成对抗网络(GAN),由 Arjovsky 等人在 2017 年提出,用于解决原始 GAN 中的训练不稳定性和模式崩溃(Mode Collapse)问题。WGAN 的核心思想是使用Wasserstein 距离(也叫 Earth Mover’s 距离,EM 距离)来度量生成分布和真实分布之间的距离,代替原始 GAN 使用的 Jensen-Shannon (JS) 散度。

1. 原始 GAN 的问题

在原始 GAN 中,生成器 G G G 和判别器 D D D 通过博弈论的方式进行对抗性训练,目标是让 G G G 生成的假样本与真实样本尽可能相似,而 D D D 则要尽可能区分开真假样本。GAN 的损失函数基于交叉熵,具体公式如下:

  • 判别器损失
    L D = − E x ∼ P d a t a [ log ⁡ D ( x ) ] − E z ∼ P z [ log ⁡ ( 1 − D ( G ( z ) ) ) ] L_D = -\mathbb{E}_{x \sim P_{data}}[\log D(x)] - \mathbb{E}_{z \sim P_z}[\log (1 - D(G(z)))] LD=ExPdata[logD(x)]EzPz[log(1D(G(z)))]
  • 生成器损失
    L G = − E z ∼ P z [ log ⁡ D ( G ( z ) ) ] L_G = -\mathbb{E}_{z \sim P_z}[\log D(G(z))] LG=EzPz[logD(G(z))]

在训练过程中,GAN 使用的 Jensen-Shannon 散度(JS 散度)在两个分布不重叠的情况下为常数,这会导致生成器梯度消失,造成训练不稳定,模型难以收敛。此外,原始 GAN 经常会出现模式崩溃问题,即生成器只能生成一小部分样本,不能涵盖真实数据分布的所有模式。

2. WGAN 的改进:使用 Wasserstein 距离

WGAN 的关键改进是用 Wasserstein 距离来替代 JS 散度。Wasserstein 距离度量两个概率分布之间的距离,反映了从一个分布变换到另一个分布所需的最小“代价”,这个代价可以理解为将一个分布的质量搬运到另一个分布的总距离(类似于搬运土堆的工作量,因此也叫 Earth Mover’s 距离)。

Wasserstein 距离的定义:

给定两个概率分布 P r P_r Pr P g P_g Pg,它们的 Wasserstein 距离定义为:
W ( P r , P g ) = inf ⁡ γ ∈ Π ( P r , P g ) E ( x , y ) ∼ γ [ ∥ x − y ∥ ] W(P_r, P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x, y) \sim \gamma} [\|x - y\|] W(Pr,Pg)=γΠ(Pr,Pg)infE(x,y)γ[xy]
其中 Π ( P r , P g ) \Pi(P_r, P_g) Π(Pr,Pg) 是所有将 P r P_r Pr 变为 P g P_g Pg 的联合分布, ∥ x − y ∥ \|x - y\| xy 表示从 P r P_r Pr 采样的 x x x 和从 P g P_g Pg 采样的 y y y 之间的距离。

Wasserstein 距离具有良好的性质:

  • 可微分:即使生成器和真实分布没有重叠,Wasserstein 距离仍然可以提供有意义的梯度。
  • 更稳定:WGAN 训练过程更加稳定,生成器和判别器的更新更加顺畅,避免了梯度消失问题。

3. WGAN 的损失函数

为了使用 Wasserstein 距离,WGAN 对判别器进行了修改。原始 GAN 的判别器输出为一个二值概率,判别样本是真实的还是生成的。而 WGAN 的判别器不再是输出概率,而是一个评分函数(score function),用来衡量样本的“真实程度”。

在 WGAN 中,判别器被称为批评器(Critic),其损失函数变为:

  • 批评器损失
    L C = − E x ∼ P r [ C ( x ) ] + E z ∼ P z [ C ( G ( z ) ) ] L_C = -\mathbb{E}_{x \sim P_r}[C(x)] + \mathbb{E}_{z \sim P_z}[C(G(z))] LC=ExPr[C(x)]+EzPz[C(G(z))]
    其中 C ( x ) C(x) C(x) 是批评器对真实样本 x x x 的打分, C ( G ( z ) ) C(G(z)) C(G(z)) 是对生成样本的打分。

  • 生成器损失
    L G = − E z ∼ P z [ C ( G ( z ) ) ] L_G = -\mathbb{E}_{z \sim P_z}[C(G(z))] LG=EzPz[C(G(z))]

批评器的目标是让 C ( x ) C(x) C(x) 尽可能大, C ( G ( z ) ) C(G(z)) C(G(z)) 尽可能小,从而拉开真实样本和生成样本的评分差距。

4. 1-Lipschitz 连续性和权重裁剪

为了保证 Wasserstein 距离的计算有效,批评器必须满足1-Lipschitz 连续性。也就是说,对于任何两个输入 x 1 x_1 x1 x 2 x_2 x2,都要求:
∣ C ( x 1 ) − C ( x 2 ) ∣ ≤ ∥ x 1 − x 2 ∥ |C(x_1) - C(x_2)| \leq \|x_1 - x_2\| C(x1)C(x2)x1x2
WGAN 通过**权重裁剪(weight clipping)**来强制批评器满足 1-Lipschitz 连续性。即在每次更新批评器的参数后,将权重限制在某个范围内,如 [ − 0.01 , 0.01 ] [-0.01, 0.01] [0.01,0.01]。虽然权重裁剪是 WGAN 中的一个重要步骤,但在实际应用中,裁剪会导致模型训练变得较为不稳定,因此 WGAN 后来被改进为 WGAN-GP(使用梯度惩罚替代权重裁剪,详见 WGAN-GP 部分)。

5. WGAN 的训练流程

WGAN 的训练流程与标准 GAN 相似,但有几点区别:

  1. 批评器更新次数增加:在每次更新生成器之前,批评器通常会进行多次更新(例如 5 次)。这有助于确保批评器能够提供有效的梯度给生成器。
  2. 权重裁剪:在更新批评器参数后,对批评器的权重进行裁剪,以保证 Lipschitz 连续性。
  3. 生成器更新:当批评器的训练充分后,才会更新生成器。

6. WGAN 的优势

  • 梯度消失问题缓解:WGAN 通过 Wasserstein 距离计算出连续可微的损失,即使生成分布和真实分布几乎不重叠,生成器仍能获得有效的梯度更新。
  • 模式崩溃问题缓解:由于 Wasserstein 距离提供了更精确的分布距离衡量标准,生成器更能学习到数据分布的多样性,从而避免模式崩溃。
  • 训练稳定性提升:WGAN 在训练过程中,生成器和判别器的更新更稳定,不容易出现发散或震荡的问题。

7. WGAN 的不足

  • 权重裁剪问题:虽然权重裁剪保证了 Lipschitz 连续性,但它也可能限制批评器的表示能力,使得训练变得较慢或不稳定。为此,WGAN-GP 提出了用梯度惩罚来代替权重裁剪。

8. WGAN-GP(WGAN with Gradient Penalty)

WGAN-GP 是 WGAN 的改进版本,提出了一种更有效的方式来保证批评器的 1-Lipschitz 连续性。它通过引入梯度惩罚(Gradient Penalty)来强制批评器的梯度满足 Lipschitz 条件,而不是使用权重裁剪。

梯度惩罚项
L G P = λ E x ^ ∼ P x ^ [ ( ∥ ∇ x ^ C ( x ^ ) ∥ 2 − 1 ) 2 ] L_{GP} = \lambda \mathbb{E}_{\hat{x} \sim P_{\hat{x}}} \left[ \left( \|\nabla_{\hat{x}} C(\hat{x}) \|_2 - 1 \right)^2 \right] LGP=λEx^Px^[(x^C(x^)21)2]
其中 x ^ \hat{x} x^ 是从生成数据和真实数据的线性插值中采样的, λ \lambda λ 是惩罚系数,通常设置为 10。

引入梯度惩罚后,WGAN-GP 保留了 WGAN 的所有优势,同时避免了权重裁剪的缺点,使训练更加稳定高效。


总结:

WGAN 通过 Wasserstein 距离代替 JS 散度,解决了原始 GAN 中的训练不稳定和模式崩溃问题,并显著提升了生成模型的性能和稳定性。尽管 WGAN 存在一些权重裁剪方面的问题,但它为生成模型的发展提供了一个重要的理论基础,后续的 WGAN-GP 改进版进一步提升了其性能。


http://www.ppmy.cn/news/1528175.html

相关文章

【C#生态园】深入比较:六款C#数据流处理库对比解析

解密C#数据流处理利器:全面评析六大库 前言 随着信息技术的不断发展,数据流处理已经成为许多软件系统中必不可少的一部分。针对C#和.NET开发者来说,选择合适的数据流处理库可以极大地提高开发效率和系统性能。本文将介绍几个流行的C#数据流…

sqlgun靶场漏洞挖掘

进入首页首先看到一个搜索框,那么我们试一下xss 用script弹了个一 接下来我们尝试一下sql注入 这里我们使用联合查询查到了他的数据库名,那么这里也就存在SQL注入了 这里存在SQL注入那么我们就尝试一下是否可以注入木马来getshell 首先我们扫描目录&…

谷神后端list转map

list转map /*** list2map* list转map:支持全量映射、单字段映射。* * param $list:list:列表。* param $key:string:键。* param $field:string:值字段域。** return map**/ #function list2map($list, $key, $field)#if ($vs.util.isList($list) and $vs.util.is…

小琳AI课堂:MASS模型——革新自然语言处理的预训练技术

大家好,这里是小琳AI课堂。今天我们来聊聊一个在自然语言处理(NLP)领域非常热门的话题——MASS模型,全称是Masked Sequence to Sequence Pre-training for Language Generation。这是华为诺亚方舟实验室在2019年提出的一种创新模型…

用 Docker 部署 Seafile 社区版

快速开始 本文档使用以下约定: /opt/seafile-data是 Seafile 的目录。 如果您将 Seafile 放在不同的目录中,请相应地调整所有路径。Seafile 使用两个 Docker 卷 来保存其数据库和 Seafile Docker 容器中生成的数据。卷的主机路径分别是/opt/seafile-my…

USB组合设备——串口+鼠标+键盘

文章目录 USB组合设备——串口+鼠标+键盘描述符结构设备描述符配置描述符集合配置描述符接口关联描述符键盘接口描述符鼠标接口描述符类特殊命令CDC 的类特殊命令HID 的类特殊命令接口 2接口3USB组合设备——串口+鼠标+键盘 描述符结构 设备描述符 配置描述符 接口关联描述符…

计算机人工智能前沿进展-大语言模型方向-2024-09-12

计算机人工智能前沿进展-大语言模型方向-2024-09-12 1. PharmaBench: Enhancing ADMET benchmarks with large language models Z Niu, X Xiao, W Wu, Q Cai, Y Jiang, W Jin, M Wang… - Scientific Data, 2024 大语言模型在药物发现中的应用:PharmaBench 文章由…

k8s云平台部署文档

一、基本环境配置 Markdown添加图片方式:https://www.jianshu.com/p/280c6a6f2594 1.修改主机名并配置映射 所有节点修改主机名并配置映射:echo 10.104.44.23 master 10.104.44.21 node >> /etc/hosts2.配置防火墙和selinux 控制/计算节点都关闭selinux和防火墙编…