机器学习-深度学习数据集之打架斗殴识别数据集

news/2024/11/12 19:08:59/

关于“打架识别数据集”,这是一个专门设计用于训练计算机视觉模型以识别打架、摔倒以及持械行为的数据集。此类数据集对于开发安全监控系统至关重要,可以帮助在公共场所如学校、酒吧或地铁站等地及时发现潜在的暴力事件,从而快速采取行动来防止事态恶化。
在这里插入图片描述

数据集概览

类别定义:
  • 打架:两个或多个个体之间的肢体冲突,通常包括推搡、拳打脚踢等动作。
  • 摔倒:一个人由于失去平衡而倒地的行为。
  • 持械:个体持有可以作为武器使用的物品,如棍棒、刀具等。
格式说明:

数据集采用YOLO(You Only Look Once)格式标注,这是一种流行的物体检测框架,其标注文件通常为文本文件,每一行包含一个目标框的信息,格式如下:
<class> <x_center> <y_center> <width> <height>,其中 <class> 是物体所属类别的索引,而 <x_center><y_center> 是边界框中心点相对于图像尺寸的比例坐标,<width><height> 则是边界框宽度和高度相对于图像尺寸的比例值。
在这里插入图片描述

数据集详情

数据集包含超过19,000张图片,这些图片来源于各种不同的场景和环境,确保了数据集的多样性和复杂性,有利于模型在不同条件下都能保持良好的泛化能力。

1# 加载训练好的模型
2model = YOLO('best.pt')
3
4# 检测图像
5def detect_fight(image):
6    results = model.predict(image)
7    for result in results:
8        boxes = result.boxes
9        for box in boxes:
10            x1, y1, x2, y2 = box.xyxy[0]
11            conf = box.conf
12            class_id = box.cls
13            
14            # 显示结果
15            cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
16            cv2.putText(image, f'Class: {class_id}, Conf: {conf:.2f}', (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
17    
18    return image
19
20# 测试图像
21test_image = cv2.imread('path/to/test_image.jpg')
22result_image = detect_fight(test_image)
23cv2.imshow('Detected Fight', result_image)
24cv2.waitKey(0)
25cv2.destroyAllWindows()
图像来源:
  • 公共摄像头录像截图
  • 电影片段中的相关场景
  • 互联网上的公开资源,如新闻报道中的图片
    在这里插入图片描述
图像预处理:

为了保证数据的质量,所有图像都经过了预处理步骤,包括但不限于:

  • 尺寸标准化:所有图像调整为相同的分辨率,以便于模型训练。
  • 噪声去除:使用图像处理技术去除图像中的噪声。
  • 数据增强:通过旋转、缩放、翻转等操作来增加数据集的多样性,提高模型的鲁棒性。
标注过程:

标注是一项耗时且需要细致的工作。对于本数据集,采用了专业团队进行人工标注,并结合了部分自动工具辅助。每个目标框都经过了仔细审查,以确保位置和类别标签的准确性。

数据集划分:

数据集被分为训练集、验证集和测试集三部分,比例大约为7:1:2。这样的划分有助于在训练过程中评估模型性能,并最终测试模型的泛化能力。

使用建议

当使用这个数据集训练模型时,有几个方面需要注意:

  • 过拟合与欠拟合:由于数据量较大,应当注意模型的复杂度,避免过拟合。同时,如果模型表现不佳,则可能需要进一步调整网络架构或参数设置来解决欠拟合问题。
  • 正负样本不平衡:打架、摔倒、持械这三类行为可能在数据集中分布不均,应当使用适当的技术手段(如重采样)来处理这种不平衡,以提高模型对稀有类别的识别能力。
  • 评估指标选择:除了常用的准确率之外,还需要考虑精确率、召回率、F1分数等指标,尤其是当类别不平衡时,单一的准确率指标并不能全面反映模型性能。

通过以上详细的介绍,我们可以看到,这个打架识别数据集是一个精心策划和构建的数据集,它旨在推动公共安全领域的技术进步。然而,任何数据集都不是完美的,在使用时仍需根据具体情况进行适当的调整和完善。


http://www.ppmy.cn/news/1528078.html

相关文章

蓝桥杯2024省C

P10898 [蓝桥杯 2024 省 C] 拼正方形 题目描述 小蓝正在玩拼图游戏&#xff0c;他有 7385137888721个 22的方块和 10470245 个 11 的方块&#xff0c;他需要从中挑出一些来拼出一个正方形&#xff0c;比如用 3 个 22 和 4 个 11 的方块可以拼出一个 44 的正方形&#xff0c;用…

uniapp中实现<text>文本内容点击可复制或拨打电话

推荐学习文档 golang应用级os框架&#xff0c;欢迎stargolang应用级os框架使用案例&#xff0c;欢迎star案例&#xff1a;基于golang开发的一款超有个性的旅游计划app经历golang实战大纲golang优秀开发常用开源库汇总想学习更多golang知识&#xff0c;这里有免费的golang学习笔…

️ 保护您的 JavaScript:安全和隐私的最佳实践

JavaScript 是一种用于构建动态 Web 应用程序的强大语言&#xff0c;但功能越强大&#xff0c;责任越大。确保 Web 应用程序的安全性和隐私性至关重要。本指南介绍了保护应用程序和用户的基本最佳实践。 &#x1f6e1;️ 安全和隐私基础知识 1.1、了解安全与隐私 安全&#x…

尚硅谷-----乐(智)尚代驾(Day4...重置版)---项目概述环境搭建

一、项目介绍 1.背景 乐尚代驾是一种新型的出行服务模式&#xff0c;通过该平台可以为用户提供代驾服务&#xff0c;采用微信小程序方式进行开发&#xff0c;主要分为乘客端、司机端和平台管理端&#xff0c;这里只实现前两个。 2.技术概括 后端技术栈 前端技术栈 使用的云服…

linux 系统是如何收发数据包

目录 1. 背景 1.1 协议栈的构成 1. 应用层: 2. Socket 层: 3. 传输层 (TCP/UDP): 4. 网络层 (IP): 5. 数据链路层 (MAC): 6. 物理层 (网卡驱动): 1.2 数据包的组成 2. 接收网络数据包的流程 2.1 数据包接收流程概述 2.2 详细步骤说明 2.2.1 网卡接收数据包 2.2.2…

【Obsidian】当笔记接入AI,Copilot插件推荐

当笔记接入AI&#xff0c;Copilot插件推荐 自己的知识库笔记如果增加AI功能会怎样&#xff1f;AI的回答完全基于你自己的知识库余料&#xff0c;是不是很有趣。在插件库中有Copilot插件这款插件&#xff0c;可以实现这个梦想。 一、什么是Copilot&#xff1f; 我们知道githu…

Linux(Ubuntu)(终端实现helloworld输出)

一、终端实现gcc编译 1.写好helloworld.h&#xff0c;helloworld.c&#xff0c;main.c后&#xff0c;打开终端&#xff0c;切换到保存这些文件的文件夹的目录&#xff0c;我把这些文件存放在helloworld的文件夹下&#xff0c;所以输入cd ~/helloworld 2.查看该目录下的文件&a…

基于STM32的智能门禁系统(指纹、蓝牙、刷卡、OLED、电机)

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于STM32单片机&#xff0c;六个按键&#xff0c;分别代表指纹、蓝牙、刷卡的正确进门与错误进门&#xff1b; 比如第一个按键按下&#xff0c;表示指纹正确&#xff0c;OLED显示指纹正确&#x…