微服务重构:Mysql+DTS+Kafka+ElasticSearch解决跨表检索难题

news/2024/12/22 10:08:01/

d39d41da0427896d3f530bf3a4586509.jpeg

1、背景

微服务拆分过程里,会对数据库模块重新进行建模拆分,导致部分表和数据,出现物理隔离,导致跨库JOIN的SQL不可行,并在数据检索上也有性能损耗的风险。下面我们来一起探讨一下,具体的解决方案。

1.1 方案比较

业界一般解决方案包括不限于下面几个

方案

实现手段

优点

缺点

应用程序层面改造

通过子查询、UNION ALL或进行JOIN操作来实现类似的效果

灵活性高、易于实现:可以根据具体需求定制查询逻辑

  • 性能问题:复杂的JOIN操作和子查询可能导致性能下降,尤其是在大数据量和高并发情况下。

  • 维护成本高:随着业务逻辑的变化,SQL语句可能需要频繁修改和维护。

  • 可读性差:复杂的SQL语句可能难以理解和维护。

使用mysql的FEDERATED引擎的表

自带的联邦存储引擎

  • 数据集中管理:可以将多个数据库的数据集中到一个数据库中进行查询和管理。

  • 减少网络开销:通过本地代理表访问远程数据,减少了网络传输的开销。

  • 性能问题:FEDERATED引擎的性能通常不如本地表,尤其是在跨网络访问时。

  • 可靠性问题:依赖于远程数据库的可用性,如果远程数据库不可用,本地代理表也无法访问数据。

  • 安全性问题:需要确保远程数据库的安全性,防止数据泄露。

使用BI工具离线分析


  • 强大的分析功能:BI工具通常提供丰富的数据分析和可视化功能。

  • 易于使用:用户友好的界面,便于非技术人员进行数据分析。

  • 延时性问题可能比较严重

  • 机器配置要求也高

使用Mysql跨库的平替方案实现

如ES文本搜索引擎等

  • 高性能:Elasticsearch等文本搜索引擎通常具有较高的查询性能,适合大数据量的查询。

  • 分布式架构:支持分布式部署,具有良好的扩展性和容错性。

  • 丰富的功能:提供全文搜索、聚合分析等多种功能。

  • 学习曲线:需要学习和掌握新的技术和工具。

  • 数据同步问题:需要确保Elasticsearch中的数据与MySQL中的数据保持同步。

  • 成本问题:部署和维护Elasticsearch集群可能需要较高的成本。

1.2 业务特点

  • 确保数据的最终一致性

  • 现实场景是读多写少,数据延迟性能容忍度较高,非金融业务场景

  • 未来需要功能拓展,支持数据的灵活检索和模糊匹配


2、业务落地方案

2.1 核心组件选型

基于上述的业务特点,我们选择了通过Mysql + DTS + Kafka + ES来解决微服务拆分导致的跨库联表检索问题。

Mysql-数据库集群

Mysql有以下特点:

  1. 关系型数据库:MySQL作为关系型数据库,适用于存储结构化数据,并提供强大的事务支持和数据完整性保证。

  2. 微服务数据存储:在微服务架构中,每个服务可以拥有自己的MySQL数据库,实现数据的独立性和隔离性。

DTS-数据传输服务

DTS提供了多种数据传输的解决方案,我们是基于DTS消息订阅服务,本质是DTS内置了一个Kafka,并将binlog数据源,丢到kafka终端。

DTS有以下特点:

  1. 数据迁移与同步:DTS能够实现数据库和中间件之间的数据迁移和实时同步,确保数据在不同组件之间的准确性和一致性。

  2. 自动化操作:DTS提供自动化配置和管理工具,简化数据传输流程,减少人工干预。

ES-搜索引擎

Elasticsearch是一个强大的分布式搜索和分析引擎,它通过其灵活的数据模型和高级搜索功能,能够有效地解决跨表数据库查询的难题,ES具备以下的特点:

  1. 跨索引查询:Elasticsearch允许在一个查询中指定多个索引,实现跨表查询。这通过将不同表的数据映射到不同的索引中,使得查询能够跨越这些索引,类似于传统数据库中的JOIN操作

  2. 数据同步:Elasticsearch提供了多种数据同步方案,包括同步调用、异步通知和监听数据库的binlog。这些方案确保了数据在Elasticsearch和数据库之间的实时一致性

  3. 分布式排序:Elasticsearch支持分布式排序,能够在多个节点上并行处理排序任务,提高了排序性能

  4. 分片与副本:通过合理地设置分片和副本数量,Elasticsearch可以优化数据分布和查询性能,确保系统的高吞吐量和低延迟

2.2 架构整体方案

f2d54e9210482b973711b645bbda9f05.png

方案步骤如下:

  1. MySQL集群产生Binlog

    1. Binlog:MySQL的二进制日志,记录了数据库的所有更改操作(如插入、更新、删除)。

    2. MySQL集群:通常指主从复制或多主复制的架构,确保数据的高可用性和冗余。

  2. DTS采集Binlog

    1. DTS(Data Transmission Service):腾讯云的数据传输服务,用于捕获和传输数据变更。

    2. 采集Binlog:DTS通过读取MySQL的Binlog,捕获数据的变更操作。

  3. 将Binlog数据发送到Kafka

    1. Kafka集群:一个高吞吐量的分布式消息队列系统,用于处理实时数据流。

    2. Topic和分区策略:DTS根据预定义的主题(Topic)和分区策略,将Binlog数据发送到Kafka集群的相应分区。分区策略可以基于表名等。

  4. App轮训消费Kafka分区数据

    1. 轮训消费:应用程序(App)定期检查Kafka分区中的新数据,并进行消费。

    2. 数据处理:App对消费到的数据进行必要的处理,如过滤、转换等。

    3. 聚合和整合:App对处理后的数据进行聚合和整合,生成宽表数据。宽表通常包含多个相关表的数据,便于后续查询和分析。

  5. 将宽表数据落库ES

    1. Elasticsearch(ES):一个分布式搜索和分析引擎,适用于全文搜索、结构化搜索和分析。

    2. 落库ES:将聚合后的宽表数据存储到Elasticsearch中,便于快速检索和分析。

  6. 上游服务检索ES数据

    1. 上游服务:其他依赖于这些数据的业务服务。

    2. 检索数据:上游服务可以通过Elasticsearch的API查询和检索已经存储的数据。

2.3 方案落地

2.3.1 Es宽表索引结构设计

我们用2张图对比,来说明ES宽表设计思路

92b74e8be2d8cb54daf587570781faa3.png

7aa18e52f44ed03cea62a8fcdecde7f7.png

分析:

  • 通过抽象表结构的ER关系图,我们用一个大的宽表,来存储诸多存在联表关系的表数据

    • 例如字符串(text)、关键字(keyword)、整数(integer)、浮点数(float)、布尔值(boolean)等

    • 1对1:使用平铺字段

    • 1对N:使用json数组结构

2.3.2 DTS与Kafka的存储方案设计

DTS通过实时拉取源实例的Binlog增量日志,将增量数据解析成Kafka message,然后存储到内置Kafka Server。

(1)DTS支持的订阅事件
操作类型支持的 SQL 操作
DMLINSERT、UPDATE、DELETE
DDLCREATE DATABASE、DROP DATABASE、CREATE TABLE、ALTER TABLE、DROP TABLE、RENAME TABLE

我们主要是监听相关业务表的DML事件。

精细到表维度

5128a2dc5c99ca126e33dacab4194e0d.png

上面是DTS订阅了 某一数据库的某些表的binlog事件监听。这些被订阅表的以下变更,都会通过binlog,然后到DTS被暂存。

(2)DTS支持的消息格式

DTS内置支持 ProtoBuf、Avro 和 JSON 三种格式保存消息。

  • ProtoBuf 和 Avro 采用二进制格式,消费效率更高

  • JSON 采用轻量级的文本格式,更加简单易用

我们采用了ProtoBuf对消息进行序列化存储,使得消息存储更加灵活高效,空间占用更小,消费速度更快。

(3)内置Kafka支持的分区数量

设置数据投递到内置 kafka 中 Topic 的分区数量,增加分区数量可提高数据写入和消费的速度。单分区可以保障消息的顺序,多分区无法保障消息顺序,如果您对消费到消息的顺序有严格要求,请选择分区数量为1。

当用户选择 Kafka 多分区时,可以通过设置分区策略(见下面配置),将业务相互关联的数据路由到同一个分区中,这样方便用户处理消费数据。

(4)内置Kafka支持的分区策略

Topic 分区策略分为三种,将订阅数据生产到 Kafka 各分区:

  • 按表名分区

  • 表名+主键分区

  • 使用自定义Topic分区策略        


一、按表名分区

e95959bf888a77fe3da90bb4863c0df3.png

将源库的订阅数据按照表名进行分区,设置后相同表名的数据会写入同一个 Kafka 分区中。

好处
  • 在数据消费时,同一个表内的数据变更总是顺序获得

  • 适合表数据量均匀的场景,且各个表的数据量都十分独立解耦,没有太复杂的关联处理

缺点
  • 仅指定按照表名分区时,如果一张表为热点数据(大表数据),可能导致某个分区的存储压力会非常大。

  • 表之间存在1对1,或者1对n,所以必然导致不同表的数量级在后期会存在巨大差异,这会让分区的数据分布直接跟表数据量挂钩,不利于提高kafka的消费吞吐量,甚至造成消息堵塞

二、按表名+主键分区

d0c580b95fb24f4be43f999e11884054.png

将源库的订阅数据按照表名+主键进行分区,设置后相同表名的同一个主键ID的数据,会写入同一个Kafka分区中。

好处
  • 适用于热点数据(适用于热点数据的表),设置后热点数据的表,把相同主键的数据写入同一个分区,让同一个表的数据分散到不同分区中,提升并发消费效率。


三、自定义分区策略

8f525c8060d63b760c2d1be60965d21c.png

自定义分区策略:先通过正则表达式对订阅数据中的库名和表名进行匹配,将匹配到的数据按照表名+表列值进行分区投递。

好处
  • 最终根据将不同表的不同列值,加入分区策略,并均匀写入到多个partition分区,让同一类的相关数据落到同一个分区

  • 方便业务扩展聚合处理(本地缓存了用户信息,这样后续一定时间里,都可以复用了)

真实业务

虽然业务表都归属于独立模块,但都冗余了一个关联主表的字段user_id,因此我们可以通过对user_id设置列分区策略,使得某一位用户的所有关联表数据,落到同一个分区,便于后续做聚合处理:

  • 正则表达式对库名和表名进行匹配

  • 匹配后的数据再按照表的主键列进行分区

73bfa8fe7da6b72b524ff87cc0e6dc13.png

2.3.4 应用消费kafka消息

DTS通过实时拉取源实例的Binlog增量日志,将增量数据解析成Kafka message,然后存储到内置Kafka Server;因此我们可以通过Kafka Client来消费数据。

(1)DTS内置kafka特点

订阅的消息保存在内置Kafka中,默认保存时间为最近1天,单Topic的最大存储为500G。

(2)消息事件Record
过滤心跳事件

例如:checkPoint事件是用来检测心跳发送接受的,可以忽略这类事件(messageType = CHECKPOINT)

事件数据结构
Record 中的字段名称说明
id全局递增 ID。
version协议版本,当前版本为1。
messageType消息类型,枚举值:"INSERT","UPDATE","DELETE","DDL","BEGIN","COMMIT","HEARTBEAT","CHECKPOINT"。
fileName当前 record 所在的 binlog 文件名。
position当前 record 的在 binlog 中结束的偏移量,格式为 End_log_pos@binlog 文件编号。例如,当前 record 位于文件 mysql-bin.000004 中,结束偏移量为2196,则其值为"2196@4"。
safePosition当前事务在 binlog 中开始的偏移量,格式同上。
timestamp写入 binlog 的时间,unix 时间戳,秒级。binlog 记录的事务中对应 event header 里面的 timestamp,源端长事务操作可能会导致 timestamp 与 readerTimestamp 有时间差,这种属于正常情况。
gtid当前的 gtid,如:c7c98333-6006-11ed-bfc9-b8cef6e1a231:9。
transactionId事务 ID,只有 commit 事件才会生成事务 ID。
serverId源库 serverId,查看源库 server_id 参考 SHOW VARIABLES LIKE 'server_id'。
threadId提交当前事务的会话 ID,参考 SHOW processlist;。
sourceType源库的数据库类型,当前版本只有 MySQL。
sourceVersion源库版本,查看源库版本参考select version();。
schemaName库名。
tableName表名。
objectName格式为:库名.表名。
columns表中各列的定义。
oldColumnsDML 执行前该行的数据,如果是 insert 消息,该数组为 null。
newColumnsDML 执行后该行的数据,如果是 delete 消息,该数组为 null。
sqlDDL 的 SQL 语句。
executionTimeDDL 执行时长,单位为秒。
heartbeatTimestamp心跳消息的时间戳,秒级。只有 heartbeat 消息才有该字段。
syncedGtidDTS 已解析 GTID 集合,格式形如:c7c98333-6006-11ed-bfc9-b8cef6e1a231:1-13。
fakeGtid是否为构造的假 GTID,如未开启 gtid_mode,则 DTS 会构造一个 GTID。
pkNames如果源库的表设有主键,则 DML 消息中会携带该参数,否则不会携带。
readerTimestampDTS 处理这条数据的时间,unix 时间戳,单位为毫秒数。
tagsQueryEvent 中的 status_vars,详细参考 QueryEvent。
total如果消息分片,记录分片总数。当前版本 (version = 1) 无意义,预留扩展。
index如果消息分片,记录当前分片的索引。当前版本 (version = 1) 无意义,预留扩展。
(3)正常业务流程和kafka消息拆包处理

根据2.3.2所述,kafka的消息是按user_id来定制分区策略的,通过消息过滤后,一次批量取消息会拿到多条Record(包括了update/delete/insert),即消费者将同时拿到一个用户关联的多个表数据变更记录;一个消息包含多个DML事件(不同的表、不同的log数据)。

异常情况:默认kafka最大的消息是8MB,但还是可能出现超限情况,即,一条binlog可能拆分为多条Record数据,因此在应用层只能在本地内存里,对多条消息进行合并操作。

下面对正常业务流程和kafka消息拆包处理分步描述:

d8027d9e989fb4c810997adc6baf7706.png

分析:

  • 一个消费者,在一个分区里,消费是线程安全的。因此我们可以通过类似上图的逻辑,完成消息反序列化和业务处理。

  • kafka消息拆包是很常见的事情,如果我们想调整kafka消息拆包触发阈值,可以通过调整 Kafka 生产者的配置参数 max.request.size来实现

(4)策略模式处理不同数据结构的binlog

处理消息有以下需要注意的点:

  • DML事件类型:区分type是插入、更新、删除

  • 表名:不同的表有不同的字段注入逻辑、模型构建方法

2.3.5 业务写入&读出ES

(1)业务写:应用客户端加锁

消费者组有以下几个建议:

  • 应用的pod数量调整

    • 这里search-app的数量设置为6,那么最终<partition分区数,可以确保所有实例都能消费到分区消息。

  • ES写操作:

    • ‍更新:

      • 信号量Semaphore加锁,并通过监听器成功&失败,都释放信号量,否则容易死锁

      • 通过EsClient的异步执行api完成落库任务,提高消费能力

写入:

        • 延迟500ms,提供一个空窗期给业务数据库的主从同步完成

        • 检查doc是否存在

        • 不存在则创建(es的version乐观锁)

        • 内置重试机制

    • 删除:

      • 通过primaryKey直接删除doc‍

(2)业务读:应用客户端限流

参考之前写过客户端限流文章Guava客户端限流源码分析

(3)Es运维变更

需求会在重构期间不断调整,这不又来一个需求了吗。

我们要对已有的宽表增加字段,这就涉及到2个方面:

  • 数据层面:有增量数据和存量数据

  • 结构层面:有动态模板的mapping调整和字段运维变更

变更方案

e83226ed02fc1aa9e59b439d168b85bc.png

3、业务灰度

我们通过接口灰度策略,实现ES检索接口的逐步灰度。

可以参考我的上一篇文章:基于SpringMVC的API灰度方案

4、业务难点

难点1:消费者匹配kafka集群吞吐量

业务大表变更,可能导致的大量binlog生产,经过级联扩散,暴露应用程序的消费能力的不足,导致es写入效率降低。【埋个坑,后续补充问题的排查方向】

难点2:db与es的数据一致性维护

  • 应用消费数据时,会进行异常捕获和重试,由于下游接口失败(超时、网络抖动、踩中了发布周期等原因),会重试2次,依旧失败则打日志和备份异常

  • 运维接口批量同步数据

  • 腾讯云,对kafka的堆积阈值设置告警

难点3:kafka消费延迟性问题

1~3s里,数据同步并消费完整。

  • 产品层面做优化。增加用户的操作步骤,引导用户干点别事情

  • 应用层面做优化。确保数据返回最新,并通过DB和redis缓存方案,提供最新数据

难点4:ES查询性能优化

es的深度分页问题

  • 页面提供了最大2000条数据结果查询

  • openapi提供了快照分页+redis缓存的方案(通过redis缓存分页结果,提供查询性能)

过滤器优化

  • 当进行精确值查找时, 我们会使用过滤器(filters)。过滤器很重要,因为它们执行速度非常快,不会计算相关度(直接跳过了整个评分阶段)而且很容易被缓存。我们会在本章后面的 过滤器缓存 中讨论过滤器的性能优势,不过现在只要记住:请尽可能多的使用过滤式查询。

分词器使用

  • 默认使用了ES内置的standard分词器-BM25分析算法,将文本按照一定的规则进行切割,将其分成多个词项(Tokens),加速了数据检索。

难点5:es的并发读写问题

  • 读请求:基于Guava的QPS客户端限流

  • 写请求:乐观锁,version字段进行判断是否过期修改,考虑到es后续可能移除version字段,得改用seqNo或者primaryTerm。

参考:https://www.elastic.co/guide/cn/elasticsearch/guide/current/optimistic-concurrency-control.html

难点6:使用 DTS 进行数据迁移/同步,对目标数据库有啥影响?

全量导入阶段,DTS 写入目标库时,对目标库的主要影响在 CPU 和 IOPS。

9c0dcb359ae37c8354d1bf2db15cd739.png

如下以 MySQL 同步为例进行介绍。整体流程为,数据从源实例中导出并导入到目标实例中,关键步骤包括结构初始化、全量数据初始化及增量数据处理。

(1)结构初始化

结构初始化即在目标实例中创建与源实例相同的库表结构信息。同步任务配置时,用户可以选择是否同步库表结构,如果目标实例中已经创建了与源实例相同的结构信息,则不需要同步库表结构信息,只需要同步数据即可,否则需要同步库表结构信息。

(2)全量数据初始化 

结构初始化完成后,DTS 会进行存量数据初始化,即将源实例中的全部存量数据导出并导入到目标实例中。

(3)增量数据处理  

增量数据处理通过源实例 Binlog 持续获取增量数据,进行一系列过滤转换操作后,将增量数据持久化到中间存储。在全量数据导入完成后,开始在目标实例上持续回放中间存储上的增量变更数据,从而实现目标实例与源实例数据保持一致。

5、总结

以上是我们的一次解决Es宽表解决跨库联表检索的设计方案总结,最后的业务难点和处理方法,后续有空我们继续聊!

6、参考:

  • https://mp.weixin.qq.com/s?__biz=Mzg2MjYxNDQ0NA==&mid=2247484321&idx=1&sn=5c2d605cc03916401cc9a42fd2b63ba6&chksm=ce046562f973ec74a2e1b10f02773417aaddfb15e7dc8acd4466bf6cc986bc4dbcc9a67881a0#rd

  • https://cloud.tencent.com/document/product/571/93415#mysql-.E6.95.B0.E6.8D.AE.E7.B1.BB.E5.9E.8B.E8.BD.AC.E6.8D.A2.E9.80.BB.E8.BE.91

7、其他文章

基于SpringMVC的API灰度方案

理解到位:灾备和只读数据库

SQL治理经验谈:索引覆盖

Mybatis链路分析:JDK动态代理和责任链模式的应用

大模型安装部署、测试、接入SpringCloud应用体系

Mybatis插件-租户ID的注入&拦截应用


http://www.ppmy.cn/news/1524379.html

相关文章

《食品安全导刊》是什么级别的期刊?是正规期刊吗?能评职称吗?

问题解答 问&#xff1a;《食品安全导刊》是不是核心期刊&#xff1f; 答&#xff1a;不是&#xff0c;是知网收录的正规学术期刊。 问&#xff1a;《食品安全导刊》级别&#xff1f; 答&#xff1a;国家级。主管单位&#xff1a; 中国商业联合会 主办单…

leetcode18-27

矩阵问题 18.矩阵置零 自己解法&#xff0c;空间复杂度高 自己思路写出来就好了&#xff0c;第一遍先不追求最完美。况且有时候最完美也不易读 class Solution:def setZeroes(self, matrix: List[List[int]]) -> None:"""Do not return anything, modify …

css-loader/style-loader/less-loader/sass-loader/postcss-loader各有什么作用,一次性说明白

大家都清楚在使用webpack构建前端项目时都会使用到sass-loader、less-loader、postcss-loader、css-loader、style-loader&#xff0c;但这些loader在其中起到什么作用呢&#xff1f;本篇主要阐述这些loader在打包中所扮演的角色。 概述 1、css-loader: 加载.css文件的loader&…

八戒:再不上市就要破产了!

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 这是猪八戒网刚刚发布的声明&#xff0c;热乎的&#xff0c;大概就2个意思&#xff1a; (1)猪八戒网运营正常&#xff0c;对未来整体看好。 (2)公司创始人没拿高报酬。 事情是这样的&#xff1a;8月底9月初&am…

Spring Cloud Gateway中的常见配置

问题 最近用到了Spring Cloud Gateway&#xff0c;这里记录一下这个服务的常见配置。 spring:data:redis:host: ${REDIS_HOST:xxx.xxx.xxx.xxx}port: ${REDIS_PORT:2345wsd}password: ${REDIS_PASS:sdfsdfgh}database: ${REDIS_DB:8}session:redis:flush-mode: on_savenamespa…

Vivado时序报告之Report pulse width详解

目录 一、前言 二、Report pulse width 2.1 Report pulse width 2.2 配置界面 2.3 分析结果 一、前言 在进行时序分析时&#xff0c;除了slack的分析&#xff0c;还存在pulse width的检查&#xff0c;下面将对pulse width检查进行详细说明。在report timing summary报告中…

Java语言程序设计基础篇_编程练习题*18.20 (显示多个圆)

目录 题目&#xff1a;*18.20 (显示多个圆) 习题思路 代码示例 输出结果 题目&#xff1a;*18.20 (显示多个圆) 编写一个Java程序显示多个圆&#xff0c;如图18-12b所示。这些圆都处于面板的中心位置。两个相邻圆之间相距10像素&#xff0c;面板和最大圆之间也相距10像素。…

Centos7 Hadoop 单机版安装教程(图文)

本章教程,主要记录如何在Centos7中安装Hadoop单机版。 一、软件安装包和基础环境 CentOS7.x,jdk8,hadoop 通过网盘分享的文件:Hadoop 链接: https://pan.baidu.com/s/1_qGI9QeXMAJNb3TydHhQGA?pwd=xnz4 提取码: xnz4 当然你也可以自己去官网下载。 java8:https://www.ora…