【无人机设计与控制】 四轴飞行器的位移控制

news/2024/12/22 23:48:53/

摘要

本文介绍了一种四轴飞行器的位移控制方法,并通过Simulink模型进行仿真和验证。该方法通过PID控制器对飞行器的位移进行精确调节,以实现飞行器在三维空间中的稳定定位和路径跟踪。通过参数调节,能够适应不同的飞行任务需求,确保飞行器的精确位移控制。

理论

四轴飞行器的位移控制主要涉及飞行器在三维空间中的位置控制。通常通过调节飞行器的姿态(俯仰、横滚、偏航)来实现对其位置的控制。位移控制系统的设计通常包含以下几个核心部分:

1. 动力学模型:

描述四轴飞行器在三维空间中的运动行为,基于牛顿-欧拉方程建立动力学方程。

2. 位置控制器:

采用PID控制器,通过调节飞行器的推力和扭矩,实现对飞行器位移的精确控制。PID控制器根据当前位置与目标位置之间的误差来调节飞行器的推力,从而实现位移调整。

3. 姿态稳定器:

确保飞行器在执行位移调整过程中,姿态保持稳定。通常与位移控制器协同工作,通过控制姿态角度来影响飞行器的位移。

实验结果

通过Simulink仿真,对四轴飞行器的位移控制系统进行了验证。实验结果表明,PID控制器能够有效地调节飞行器的位移,使其精确跟踪给定的路径。在仿真中,飞行器从初始位置移动到目标位置,位移误差逐步减小,飞行器最终稳定在目标位置。

调整PID控制器的参数,飞行器的响应速度和稳定性也有所变化。实验还验证了在不同的干扰条件下,飞行器的位移控制系统能够保持较高的鲁棒性,能够迅速恢复到期望轨迹。

部分代码

% Quadcopter displacement control using PID
% Parameters
Kp = 1.5; % Proportional gain
Ki = 0.5; % Integral gain
Kd = 0.1; % Derivative gain% Initial conditions
initial_position = [0; 0; 0];
target_position = [1; 1; 1]; % Target position% Simulation loop
for t = 0:0.01:10% Calculate errorerror = target_position - current_position;% PID controllerintegral = integral + error * dt;derivative = (error - previous_error) / dt;control_signal = Kp * error + Ki * integral + Kd * derivative;% Update position based on control signalcurrent_position = current_position + control_signal * dt;% Save for plottingposition_history(:, end+1) = current_position;previous_error = error;
end% Plot results
plot3(position_history(1,:), position_history(2,:), position_history(3,:));
xlabel('X Position');
ylabel('Y Position');
zlabel('Z Position');
title('Quadcopter Displacement Control');
grid on;

参考文献

  1. Lee, D. (2024). Simulink Modelling of Quadrotor UAVs. CRC Press.

  2. Singh, R. (2024). Optimal Control Strategies for Multirotor Drones. Elsevier.


http://www.ppmy.cn/news/1522040.html

相关文章

Maven持续集成(Continuous integration,简称CI)版本友好管理

从Maven 3.5.0-beta-1 版本开始可以在pom文件中使用 r e v i s i o n 、 {revision}、 revision、{sha1}、${changelist}做为版本的占位符。 一、单module简单使用${revision}的场景 <project><modelVersion>4.0.0</modelVersion><parent><groupId…

使用 Cloudflare R2 代替 AWS S3……

欢迎来到雲闪世界。目录 1. AWS S3 与 Cloudflare R2 2.什么是 AWS S3&#xff1f; 3.什么是 Cloudflare R2&#xff1f; 4. AWS S3 定价 ∘ AWS S3 定价详情 (美国东部 - 弗吉尼亚北部地区) 5. Cloudflare R2 定价 ∘ Cloudflare R2 定价详情 (美国地区) 6.免费套餐&#xff…

Patlibc———更快捷的更换libc

起初是为了简化做pwn题目时&#xff0c;来回更换libc的麻烦&#xff0c;为了简化命令&#xff0c;弄了一个小脚本&#xff0c;可以加入到/usr/local/bin中&#xff0c;当作一个快捷指令&#x1f522; 这个写在了tools库&#xff08;git clone https://github.com/CH13hh/tools…

数据分析:numpy02

目录 1、NumPy 切片和索引 2、数组元素的添加与删除 3、修改数组形状 4、numpy随机数 1、NumPy 切片和索引 ndarray对象的内容可以通过索引或切片来访问和修改&#xff0c;与 Python 中 列表list 的切片操作一样。 ndarray 数组可以基于 0 - n 的下标进行索引&#xff0c;切片…

Redis位图BitMap

一、为什么使用位图&#xff1f; 使用位图能有效实现 用户签到 等行为&#xff0c;用数据库表记录签到&#xff0c;将占用很多存储&#xff1b;但使用 位图BitMap&#xff0c;就能 大大减少存储占用 二、关于位图 本质上是String类型&#xff0c;最小长度8位&#xff08;一个字…

k8s API资源对象

API资源对象Deployment 最小的资源是pod&#xff0c;deployment是多个pod的集合&#xff08;多个副本实现高可用、负载均衡等&#xff09;。 使用yaml文件来配置、部署资源对象。 Deployment YAML示例&#xff1a; vi ng-deploy.yaml apiVersion: apps/v1 kind: Deployment…

JS设计模式之“分即是合” - 建造者模式

引言 当我们在进行软件编程时&#xff0c;常常会遇到需要创建复杂对象的情况。这些对象可能有多个属性&#xff0c;属性之间存在依赖关系&#xff0c;或需要按照特定的骤来创建。在这种情况下&#xff0c;使用建造者模式&#xff08;Builder Pattern&#xff09;可以提供一种活…

给A的平方根矩阵乘高斯随机向量

所以给A的平方根矩阵乘高斯随机向量&#xff0c;目的是得到很多矩阵&#xff0c;这些矩阵的空间平均 A