【Redis 进阶】Redis 典型应用 —— 分布式锁

news/2024/12/22 15:16:13/

一、什么是分布式

在一个分布式的系统中,也会涉及到多个节点访问同一个公共资源的情况,此时就需要通过来做互斥控制, 避免出现类似于 “线程安全” 的问题。

而 Java 的 synchronized 或者 C++ 的 std::mutex,这样的锁都是只能在当前进程中生效,在分布式的这种多个进程多个主机的场景下就无能为力了,此时就需要使用到分布式锁.

本质上就是使用一个公共的服务器,来记录加锁状态

这个公共的服务器可以是 Redis,也可以是其他组件(比如 MySQL 或者 ZooKeeper 等),还可以是我们自己写的一个服务。


二、分布式锁的基础实现

思路非常简单,本质上就是通过一个键值对来标识锁的状态。

举例:考虑买票的场景,现在车站提供了若干个车次,每个车次的票数都是固定的。现在存在多个服务器节点,都可能需要处理这个买票的逻辑:先查询指定车次的余票,如果余票 > 0,则设置余票值 -= 1。

显然上述的场景是存在 “线程安全” 问题的,需要使用锁来控制,否则就可能出现 “超卖” 的情况。

此时如何进行加锁呢?

可以在上述架构中引入一个 Redis 来作为分布式锁的管理器。 

所谓的分布式锁,也是一个 / 组单独的服务器程序,给其他的服务器提供 “加锁” 这样的服务(Redis 是一种典型的可以用来实现分布式锁的方案,但不是唯一的一种方案,业界也可能使用 mysql / zookeeper 这样的组件来实现分布式锁的效果)。

此时,如果买票服务器 1 尝试买票,就需要先访问 Redis,在 Redis 上设置一个键值对,比如 key 就是车次,value 随便设置个值(比如 1)。

如果这个操作设置成功,就视为当前没有节点对该 001 车次加锁,往 redis 上设置一个特殊的键值对,就可以进行数据库的读写操作。操作完成之后,再把 Redis 上刚才的这个键值对给删除掉。

如果在买票服务器 1 操作数据库的过程中,买票服务器 2 也想买票,也会去尝试给 Redis 上写一个键值对,key 同样是车次。但是如果此时设置的时候发现该车次的 key 已经存在了,则认为已经有其他服务器正在持有锁,此时服务器 2 就需要等待或者暂时放弃。也就可以保证服务器 1 执行 “查询 -> 更新” 的过程中,服务器 2 不会执行 “查询”,也就解决了上述 “超卖” 的问题。

前面买票的场景使用 mysql 的事务也可以批量执行 “查询 + 修改” 操作,但是在分布式系统中,要访问的共享资源不一定是 mysql,也有可能是其他的存储介质,没有事务,也可能是执行一段特定的操作,是通过统一的服务器完成执行动作。

Redis 中提供了 setnx 操作,正好适合这个场景,即 key 不存在就设置,存在则直接失败。但是假设某个服务器加锁成功了(setnx 成功),但在执行后续逻辑的过程中挂了(没有执行到解锁:del 命令),所以上述场景并不完整。


三、引入过期时间

当服务器 1 加锁之后,开始处理买票的过程中,如果服务器 1 意外宕机了,就会导致解锁操作(删除该 key)不能执行,就可能引起其他服务器始终无法获取到锁的情况。为了解决这个问题,可以在设置 key 的同时引入过期时间,即这个锁最多持有多久,就应该被释放。

可以使用 set ex nx 的方式,在设置锁的同时把过期时间设置进去。

注意:此处的过期时间只能使用一个命令的方式设置,因为 redis 上的多个命令之间无法保证原子性。

如果分开多个操作,比如 setnx 之后再来⼀个单独的 expire,由于 Redis 的多个指令之间不存在关联,并且即使使用了事务也不能保证这两个操作都一定成功,因此就可能出现 setnx 成功,但是 expire 失败的情况,此时仍然会出现无法正确释放锁的问题。


四、引入校验 id

对于 Redis 中写入的加锁键值对,其他的节点也是可以删除的。比如:服务器 1 写入一个 "001":1 这样的键值对,服务器 2 是完全可以把 "001" 给删除掉的。虽然说服务器 2 不会进行这样 “恶意删除” 的操作,不过不能保证因为一些 Bug 而导致服务器 2 把锁误删除。

为了解决上述问题,可以引入一个校验 id。比如:可以把设置的键值对的值,不再是简单的设为⼀个 1,而是设成服务器的编号,形如 "001": "服务器 1"。这样就可以在删除 key(解锁)的时候,先校验当前删除 key 的服务器是否为我们当初加锁的服务器,如果是才能真正删除,如果不是则不能删除。

逻辑用伪代码描述如下: 

String key = [要加锁的资源 id];
String serverId = [服务器的编号];// 加锁, 设置过期时间为 10s
redis.set(key, serverId, "NX", "EX", "10s");// 执⾏各种业务逻辑,⽐如修改数据库数据
doSomeThing();// 解锁,删除 key,但是删除前要检验下 serverId 是否匹配
if (redis.get(key) == serverId) {redis.del(key);
}

但是很明显,解锁逻辑是两步操作 "get" 和 "del",这样做并非是原子的。


、引入 lua

为了使解锁操作原子,可以使用 Redis 内嵌的 Lua 脚本功能。Lua 也是一个编程语言,lua 是葡萄牙语中的 “月亮” 的意思,出自于 Lua 官方文档(明确说明 lua 就属于是事务的替代方案):Lua: about

Lua 的语法类似于 JS,是一个动态弱类型的语言,Lua 的解释器一般使用 C 语言实现。Lua 语法简单精炼,执行速度快,解释器也比较轻量(Lua 解释器的可执行程序体积只有 200KB 左右),因此 Lua 经常作为其他程序内部嵌入的脚本语言,Redis 本身就支持 Lua 作为内嵌脚本。redis 执行 lua 脚本的过程也是原子的,相当于执行一条命令一样(实际上 lua 中可以写多条命令)。

很多程序都支持内嵌脚本,比如 MySQL 8 支持 JS 作为内嵌脚本,比如 Vim 支持 VimScript 和 Python 作为内嵌脚本... 通过内嵌脚本来实现更复杂的功能,来提供更强的扩展性。Lua 除了和 Redis 搭伙之外,在很多场景也会作为内嵌脚本,比如在游戏开发领域常常作为编写逻辑的语言。

使用 Lua 脚本完成上述解锁功能:

if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) 
elsereturn 0 
end;

上述代码可以编写成一个 .lua 后缀的文件,由 redis-cli 或者 redis-plus-plus 或者 jedis 等客户端加载,并发送给 Redis 服务器,由 Redis 服务器来执行这段逻辑。一个 lua 脚本会被 Redis 服务器以原子的方式来执行。


六、引入 watch dog(看门狗)

上述方案仍然存在一个重要问题:当设置了 key 过期时间之后(比如 10s),那就可能当任务在我的业务逻辑还没执行完,key 就先过期(释放锁)了,从而导致锁提前失效。

把这个过期时间设置的足够长,比如 30s,是否能够解决上述这个问题呢?

很明显,设置多长时间合适是无止境的。即使设置的时间再长,也不能完全保证就没有提前失效的情况,而且如果设置的时间太长了,万一对应的服务器挂了(锁释放不及时),此时其他服务器也不能及时的获取到锁。因此相比于设置一个固定的长时间,不如动态的调整时间更合适。

所谓的 "watch dog" 本质上就是:加锁的服务器上的一个单独的线程,通过这个线程来对锁过期时间进行 “动态续约”。

注意:这个线程是业务服务器上的,不是 Redis 服务器的。

举例:初始情况下设置过期时间为 10s,同时设定看门狗线程每隔 3s 检测一次,那么当 3s 时间到的时候,看门狗就会判定当前任务是否完成。

  • 如果任务已经完成,则直接通过 lua 脚本的方式,释放锁(删除 key)。
  • 如果任务未完成,则把过期时间重写设置为 10s(即 “续约”)。

这样就不担心锁提前失效的问题了,而且在另一方面,如果该服务器挂了,看门狗线程也就随之挂了,此时无人续约,这个 key 自然就可以迅速过期,让其他服务器能够获取到锁了。


七、引入 Redlock 算法

实践中的 Redis 一般是以集群的方式部署的(至少是主从的形式,而不是单机),那么就可能出现以下比较极端的情况:

服务器 1 向 master 节点进行加锁操作,这个写入 key 的过程刚刚完成 master 就挂了,此时 slave 节点升级成了新的 master 节点。但是由于刚才写入的这个 key 还没来得及同步给 slave,此时就相当于服务器 1 的加锁操作形同虚设了,服务器 2 仍然可以进行加锁(即给新的 master 写入 key,因为新的 master 不包含刚才的 key)。

为了解决这个问题,Redis 的作者提出了 Redlock 算法。我们可以引入一组 Redis 节点,其中每一组 Redis 节点都包含一个主节点和若干从节点,并且组和组之间存储的数据都是一致的,相互之间是 “备份” 关系而并非是数据集合的一部分,这点有别于 Redis cluster。

加锁的时候,按照一定的顺序针对这些组 redis 都进行加锁操作,在写锁的时候需要设定操作的 “超时时间”,比如 50ms,即如果 setnx 操作超过了 50ms 还没有成功,就视为加锁失败。

如果给某个节点加锁失败,就立即再尝试下一个节点。当加锁成功(写入 key)的节点数超过总节点数的一半就视为加锁成功。如上图,一共五个节点,三个加锁成功,两个失败,此时视为加锁成功。这样的话,即使有某些节点挂了,也不影响锁的正确性。

那么是否可能出现上述节点都同时遇到了 “大冤种” 情况呢?

理论上这件事是有可能发生的,但是概率很小,可以忽略不计。

同理,释放锁的时候也需要把所有节点都进行解锁操作(即使是之前超时的节点,也要尝试解锁,尽量保证逻辑严密)。

Redlock 算法的核心就是:加锁操作不能只写给一个 Redis 节点,而要写多个。分布式系统中任何一个节点都是不可靠的,最终的加锁成功结论是:“少数服从多数的”,引入最多的冗余来提高 Redis 作为分布式锁的可读性。因为一个分布式系统不至于大部分节点都同时出现故障,所以这样的可靠性要比单个节点来说靠谱不少。 


八、其他功能

上述描述中我们解释了基于 Redis 的分布式锁的基本实现原理。

上述锁只是一个简单的互斥锁,但是实际上我们在⼀些特定场景中,还有一些其他特殊的锁,比如:

  • 可重入锁
  • 公平锁(遵守 “先来后到” 原则)
  • 读写锁
  • ... ...

基于 Redis 的分布式锁,也可以实现上述的特性,只不过对应的实现逻辑也会更复杂。

在实际开发中,我们并不会真的自己去实现一个分布式锁,因为已经有很多现成的库帮我们封装好了,直接拿来使用即可。比如:C++ 中的 redis-plus-plus、Java 中的 Redisson。


http://www.ppmy.cn/news/1506373.html

相关文章

LabVIEW远程开发

LabVIEW远程开发是指在不同地点的开发者通过网络协同工作,共同开发、调试和维护基于LabVIEW的应用程序。这种开发模式适用于分布式团队、远程办公和全球化项目合作,能够有效利用不同地区的人才和资源。以下是LabVIEW远程开发的详细介绍: 1. 远…

数学与自然语言处理——统计语言模型

什么是自然语言处理 – NLP 每种动物都有自己的语言,机器也是! 自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。人类通过语言来交流,狗通过汪汪叫来交流。机器也有自己的…

JavaEE 图书管理系统

基于阿里巴巴的fastjson框架搭建的JavaEE版本的图书管理系统,项目架构如下: fastjson包的阿里云下载镜像如下: Central Repository: com/alibaba/fastjson2/fastjson2/2.0.8 运行效果: Bean Book.java package Bean;public c…

MLP:全连接神经网络的并行执行

目录 MLP:全连接神经网络的并行执行 假设 代码解释 注意事项 MLP:全连接神经网络的并行执行 为了继续解释这段代码,我们需要做一些假设和补充,因为原始代码片段中DummyModel、Shard和mx.array的具体实现没有给出。不过,基于常见的编程模式和深度学习框架的惯例,我们…

电话营销机器人的优势

在人工智能的新趋势下,企业开始放弃传统外呼系统,转而使用电话销售机器人,那么使用机器人比坐席手动外呼好吗,真的可以代替人工坐席外呼吗,效率真的高吗? 1、 真人式语音 电话销售人员可以将自定义的话术…

React前端面试每日一试 6.什么是React的Context API?如何使用它?

React的Context API是一种用于共享组件树中全局数据的方法,而无需通过props逐层传递。它对于需要在应用中许多不同层次上访问数据的情况非常有用,例如当前的主题、用户信息或首选语言。 Context API的核心概念 1.创建Context:使用React.cre…

oracle创建dblink使得数据库A能够访问数据库B表LMEAS_MFG_FM的数据

1、给数据库A普通用户CMRONLINE相应的权限,在sys用户下执行以下语句 GRANT CREATE DATABASE LINK TO CMRONLINE; GRANT DROP PUBLIC DATABASE LINK TO CMRONLINE; GRANT CREATE PUBLIC DATABASE LINK TO CMRONLINE; 2、在数据库A用户 CMRONLINE下执行创建语句&…

目标跟踪那些事

目标跟踪那些事 跟踪与检测的区别 目标跟踪和目标检测是计算机视觉中的两个重要概念,但它们的目的和方法是不同的。 目标检测(object Detection):是指在图像或视频帧中识别并定位一个或多个感兴趣的目标对象的过程 。 目标跟踪(object Tracking)&…