鸿蒙轻内核M核源码分析系列二十 Newlib C

news/2024/12/23 5:41:33/

LiteOS-M内核LibC实现有2种,可以根据需求进行二选一,分别是musl libC和newlibc。本文先学习下Newlib C的实现代码。文中所涉及的源码,均可以在开源站点https://gitee.com/openharmony/kernel_liteos_m 获取。

使用Musl C库的时候,内核提供了基于LOS_XXX适配实现pthread、mqeue、fs、semaphore、time等模块的posix接口(//kernel/liteos_m/kal/posix)。内核提供的posix接口与musl中的标准C库接口共同组成LiteOS-M的LibC。编译时使用arm-none-eabi-gcc,但只使用其工具链的编译功能,通过加上-nostdinc与-nostdlib强制使用我们自己改造后的musl-C。

社区及三方厂商开发多使用公版工具链arm-none-eabi-gcc加上私有定制优化进行编译,LiteOS-M内核也支持公版arm-none-eabi-gcc C库编译内核运行。newlib是小型C库,针对posix接口涉及系统调用的部分,newlib提供一些需要系统适配的钩子函数,例如_exit(),_open(),_close(),_gettimeofday()等,操作系统适配这些钩子,就可以使用公版newlib工具链编译运行程序。


1、Newlib C文件系统

在使用Newlib C并且使能支持POSIX FS API时(可以在kernel\liteos-m\目录下,执行make meuconfig弹出配置界面,路径为Compat-Choose libc implementation),如下图所示。可以使用文件kal\libc\newlib\porting\src\fs.c中定义的文件系统操作接口。这些是标准的POSIX接口,如果想了解POSIX用法,可以在linux平台输入 man -a 函数名称,比如man -a opendir来打开函数的手册。

1.1 函数mount、umount和umount2

这些函数的用法,函数实现和musl c部分一致。

int mount(const char *source, const char *target,const char *filesystemtype, unsigned long mountflags,const void *data)
{return LOS_FsMount(source, target, filesystemtype, mountflags, data);
}int umount(const char *target)
{return LOS_FsUmount(target);
}int umount2(const char *target, int flag)
{return LOS_FsUmount2(target, flag);
}

1.2 文件操作接口

以下划线开头的函数实现是newlib c的钩子函数实现。有关newlib的钩子函数调用过程下文专门分析下。

int _open(const char *path, int oflag, ...)
{va_list vaList;va_start(vaList, oflag);int ret;ret = LOS_Open(path, oflag);va_end(vaList);return ret;
}int _close(int fd)
{return LOS_Close(fd);
}ssize_t _read(int fd, void *buf, size_t nbyte)
{return LOS_Read(fd, buf, nbyte);
}ssize_t _write(int fd, const void *buf, size_t nbyte)
{return LOS_Write(fd, buf, nbyte);
}off_t _lseek(int fd, off_t offset, int whence)
{return LOS_Lseek(fd, offset, whence);
}int _unlink(const char *path)
{return LOS_Unlink(path);
}int _fstat(int fd, struct stat *buf)
{return LOS_Fstat(fd, buf);
}int _stat(const char *path, struct stat *buf)
{return LOS_Stat(path, buf);
}int fsync(int fd)
{return LOS_Fsync(fd);
}int mkdir(const char *path, mode_t mode)
{return LOS_Mkdir(path, mode);
}DIR *opendir(const char *dirName)
{return LOS_Opendir(dirName);
}struct dirent *readdir(DIR *dir)
{return LOS_Readdir(dir);
}int closedir(DIR *dir)
{return LOS_Closedir(dir);
}int rmdir(const char *path)
{return LOS_Unlink(path);
}int rename(const char *oldName, const char *newName)
{return LOS_Rename(oldName, newName);
}int statfs(const char *path, struct statfs *buf)
{return LOS_Statfs(path, buf);
}int ftruncate(int fd, off_t length)
{return LOS_Ftruncate(fd, length);
}

在newlib没有使能使能支持POSIX FS API时时,需要提供这些钩子函数的空的实现,返回-1错误码即可。

int _open(const char *path, int oflag, ...)
{return -1;
}int _close(int fd)
{return -1;
}ssize_t _read(int fd, void *buf, size_t nbyte)
{return -1;
}ssize_t _write(int fd, const void *buf, size_t nbyte)
{return -1;
}off_t _lseek(int fd, off_t offset, int whence)
{return -1;
}int _unlink(const char *path)
{return -1;
}int _fstat(int fd, struct stat *buf)
{return -1;
}int _stat(const char *path, struct stat *buf)
{return -1;
}

2、Newlib C内存分配释放

newlibc 的malloc适配参考The Red Hat newlib C Library-malloc。实现malloc适配有以下两种方法:

  • 实现 _sbrk_r 函数。这种方法中,内存分配函数使用newlib中的。

  • 实现 _malloc_r, _realloc_r, _free_r, _memalign_r, _malloc_usable_size_r等。这种方法中,内存分配函数可以使用内核的。

为了方便地根据业务进行内存分配算法调优和问题定位,推荐选择后者。内核的内存函数定义在文件kal\libc\newlib\porting\src\malloc.c中。源码片段如下,代码实现比较简单,不再分析源码。

......
void __wrap__free_r(struct _reent *reent, void *aptr)
{if (aptr == NULL) {return;}LOS_MemFree(OS_SYS_MEM_ADDR, aptr);
}size_t __wrap__malloc_usable_size_r(struct _reent *reent, void *aptr)
{return 0;
}void *__wrap__malloc_r(struct _reent *reent, size_t nbytes)
{if (nbytes == 0) {return NULL;}return LOS_MemAlloc(OS_SYS_MEM_ADDR, nbytes);
}void *__wrap__memalign_r(struct _reent *reent, size_t align, size_t nbytes)
{if (nbytes == 0) {return NULL;}return LOS_MemAllocAlign(OS_SYS_MEM_ADDR, nbytes, align);
}
......

可能已经注意到函数命名由__wrap_加上钩子函数名称两部分组成。这是因为newlib中已经存在这些函数的符号,因此需要用到gcc的wrap的链接选项替换这些函数符号为内核的实现,在设备开发板的配置文件中,比如//device/board/fnlink/v200zr/liteos_m/config.gni,新增这些函数的wrap链接选项,示例如下:

board_ld_flags += ["-Wl,--wrap=_malloc_r","-Wl,--wrap=_realloc_r","-Wl,--wrap=_free_r","-Wl,--wrap=_memalign_r","-Wl,--wrap=_malloc_usable_size_r",
]

3、Newlib钩子函数介绍

以open函数的钩子函数_open为例来介绍newlib的钩子函数的调用过程。open()函数实现在newlib-cygwin\newlib\libc\syscalls\sysopen.c中,该函数会进一步调用函数_open_r,这是个可重入函数Reentrant Function,支持在多线程中运行。

int
open (const char *file,int flags, ...)
{va_list ap;int ret;va_start (ap, flags);ret = _open_r (_REENT, file, flags, va_arg (ap, int));va_end (ap);return ret;
}

所有的可重入函数定义在文件夹newlib-cygwin\newlib\libc\reent,函数_open_r定义在该文件夹的文件newlib-cygwin\newlib\libc\reent\openr.c里。函数代码如下:

int
_open_r (struct _reent *ptr,const char *file,int flags,int mode)
{int ret;errno = 0;if ((ret = _open (file, flags, mode)) == -1 && errno != 0)ptr->_errno = errno;return ret;
}

函数_open_r如上述代码所示,会进一步调用函数_open,该函数,以arm硬件平台为例,实现在newlib-cygwin\libgloss\arm\syscalls.c文件里。newlib目录是和硬件平台无关的痛殴他那个功能实现,libloss目录是底层的驱动实现,以各个硬件平台为文件夹进行组织。在特定硬件平台的目录下的syscalls.c文件里面实现了newlib需要的各个桩函数:

/* Forward prototypes.  */
int	_system		(const char *);
int	_rename		(const char *, const char *);
int	_isatty		(int);
clock_t _times		(struct tms *);
int	_gettimeofday	(struct timeval *, void *);
int	_unlink		(const char *);
int	_link		(const char *, const char *);
int	_stat		(const char *, struct stat *);
int	_fstat		(int, struct stat *);
int	_swistat	(int fd, struct stat * st);
void *	_sbrk		(ptrdiff_t);
pid_t	_getpid		(void);
int	_close		(int);
clock_t	_clock		(void);
int	_swiclose	(int);
int	_open		(const char *, int, ...);
int	_swiopen	(const char *, int);
int	_write		(int, const void *, size_t);
int	_swiwrite	(int, const void *, size_t);
_off_t	_lseek		(int, _off_t, int);
_off_t	_swilseek	(int, _off_t, int);
int	_read		(int, void *, size_t);
int	_swiread	(int, void *, size_t);
void	initialise_monitor_handles (void);

对于上文提到的函数_open,源码如下。后续不再继续分析了,LiteOS-M内核会提供这些钩子函数的实现。

int
_open (const char * path, int flags, ...)
{return _swiopen (path, flags);
}

小结

本文学习了LiteOS-M内核Newlib C的实现,特别是文件系统和内存分配释放部分,最后介绍了Newlib钩子函数。

如果大家想更加深入的学习 OpenHarmony 开发的内容,不妨可以参考以下相关学习文档进行学习,助你快速提升自己:

OpenHarmony 开发环境搭建:https://qr18.cn/CgxrRy

《OpenHarmony源码解析》:https://qr18.cn/CgxrRy

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……

系统架构分析:https://qr18.cn/CgxrRy

  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

OpenHarmony 设备开发学习手册:https://qr18.cn/CgxrRy

在这里插入图片描述

OpenHarmony面试题(内含参考答案):https://qr18.cn/CgxrRy


http://www.ppmy.cn/news/1469791.html

相关文章

docker和docker compose 部署

一. 将微服务运行在docker上: 1.新建一个空文件夹docker-demo,在里面再新建文件夹app,在app目录下新建一个名为Dockerfile的文件。 2.编写Dockerfile文件 3.构建镜像 4.启动镜像 5.可以访问了。 二使用Dockerfile构建微服务镜像 1.将j…

spring boot 多个项目整合,打包成可依赖的包

一、背景介绍 接手前人项目,代码都是一块一块的,很多个spring boot服务,服务器重新启动一下,就要同时再启动很多jar服务,漏一个就麻烦了(虽然有一键启动)。但是有很多终端黑框很是麻烦。领导要…

python爬虫:实现动态网页的爬取,以爬取视频为例

引言: 爬虫也被称为网络蜘蛛(Spider),是一种自动化的软件程序,能够在互联网上漫游,按照一定的规则和算法抓取数据。 爬虫技术广泛应用于搜索引擎、 数据挖掘 、信息提取等领域,是互联网技术的重要组成部分。 摘要: 作为爬虫的初学者,网页越简单越好,因为网页的结构…

KEIL5.39 5.40 fromelf 不能生成HEX bug

使用AC6 编译,只要勾选了生成HEX。 结果报如下错误 暂时没有好的解决办法 1.替换法 2.在编译完后用命令生成HEX

C语言王国——深入自定义类型(结构体)

目录 一、引言 二、结构体 1. 结构体类型的声明 2. 结构体变量的创建和初始化 2.1 创建 2.2 初始化 2.3 typedef 2.4 特殊声明 2.5 自引用 3. 结构成员访问操作符 4. 结构体内存对齐 4.1 对齐规则 4.2 offsetof 4.3 为什么存在内存对齐 5. 结构体传参 6. 结构体实现…

window系统下为django自动绘制模型类关系图

Django 提供第三方包 django-extensions,可以用来将 Django 中的 Models 生成 E-R 图。 1 安装包 pip install django-extensions 2 配置 在 Django settings.py 文件, INSTALLED_APPS 中添加 django_extensions INSTALLED_APPS (django_extension…

Burp Suite Professional 2024.5 (macOS, Linux, Windows) - Web 应用安全、测试和扫描

Burp Suite Professional 2024.5 (macOS, Linux, Windows) - Web 应用安全、测试和扫描 Burp Suite Professional, Test, find, and exploit vulnerabilities. 请访问原文链接:Burp Suite Professional 2024.5 (macOS, Linux, Windows) - Web 应用安全、测试和扫描…

leetcode打卡#day42 62. 不同路径、63. 不同路径 II、343. 整数拆分、96. 不同的二叉搜索树

62. 不同路径 class Solution { public://动态规划int uniquePaths(int m, int n) {//dp数组&#xff0c;记录到达目的地的路径数vector<vector<int>> dp(m, vector(n, 0));//初始化for(int i0; i< m; i) dp[i][0] 1;for(int i0; i< n; i) dp[0][i] 1;//遍…