【C++杂货铺铺】AVL树

news/2024/9/23 11:19:35/


目录

🌈前言🌈 

📁 概念

📁 节点的定义

📁 插入

📁 旋转

1 . 新节点插入较高左子树的左侧---左左:右单旋

2. 新节点插入较高右子树的右侧---右右:左单旋

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

📁 性能

📁 完整代码

📁 总结


🌈前言🌈 

        欢迎观看本期【C++杂货铺】,这期内容讲解AVL树,包括了什么是AVL树,如何实现AVL树,此外还会分析二叉搜索树的性能。

        学习本期内容之前,需要你对什么是二叉搜索树有一定的了解,如果不会很了解,或忘记可以快速阅览下面这篇文章:

【C++杂货铺】二叉搜索树-CSDN博客

📁 概念

        在二叉搜索树中,规定比节点小的值都放在节点的左边,比几点大的值都放在节点的右边,可以大大缩短查找的效率。

        但是如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率底下。

        因此俄罗斯的两位数学家在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新节点后,如果能保证每个节点的左右子树之差绝对值不超过1(需要对树中节点进行调整),即可降低树的高度,从而减少平均搜索长度。

 一颗AVL树必须具有以下性质:

        1. 它的左右子树都是AVL树.

        2. 左右子树高度之差(简称平衡因子)的绝对值不超过1( -1  /  0  / 1).

        如果一颗二叉搜索树是高度平衡的,那么它就是AVL树。如果它有n个节点,其高度可以维持在O(log N) ,搜索时间复杂度O(log N)。

📁 节点的定义

template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;   // 该节点的左孩子AVLTreeNode<T>* _pRight;  // 该节点的右孩子AVLTreeNode<T>* _pParent; // 该节点的双亲T _data;int _bf;                  // 该节点的平衡因子
};

📁 插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。

那么 AVL树的插入过程可以分为两步:

1. 按照二叉搜索树的方式插入新节点

2. 调整节点的平衡因子

bool Insert(const T& data)
{// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){break;}else if (1 == pParent->_bf || -1 == pParent->_bf){pCur = pParent;pParent = pCur->_pParent;}else{//根据不同情形,进行旋转...}}return true;
}

📁 旋转

1 . 新节点插入较高左子树的左侧---左左:右单旋

void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;parent->_left = subLR;
if (subLR)subLR->_parent = parent;subL->_right = parent;Node* pparent = parent->_parent;
parent->_parent = subL;
if (parent == _root)
{_root = subL;_root->_parent = nullptr;
}
else
{if (parent == pparent->_right){pparent->_right = subL;}else{pparent->_left = subL;}subL->_parent = pparent;}subL->_bf = parent->_bf = 0;
}

2. 新节点插入较高右子树的右侧---右右:左单旋

void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* pparent = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (parent == pparent->_right){pparent->_right = subR;}else{pparent->_left = subR;}subR->_parent = pparent;}subR->_bf = parent->_bf = 0;
}

3. 新节点插入较高左子树的右侧---左右:先左单旋再右单旋

void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if(bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false);}
}

4. 新节点插入较高右子树的左侧---右左:先右单旋再左单旋

//右左单旋
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 1){subRL->_bf = 0;parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 1;}else if(bf == 0){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 0;}else{assert(false);}
}Node* _root = nullptr;
};

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

        1. 验证其为二叉搜索树 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

        2. 验证其为平衡树 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子) 节点的平衡因子是否计算正确

📁 性能

        AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这 样可以保证查询时高效的时间复杂度,即log2 N。但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时, 有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数 据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


📁 完整代码

template<class T>
struct AVLTreeNode
{typedef AVLTreeNode<T> Node;AVLTreeNode(const T& val = T()):_left(nullptr), _right(nullptr), _parent(nullptr), _val(val), _bf(0){}Node* _left;Node* _right;Node* _parent;T _val;//平衡因子int _bf;
};template<class T>
class AVLTree
{typedef AVLTreeNode<T> Node;
public://插入bool Insert(const T& val){if (_root == nullptr){_root = new Node(val);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_val> val){parent = cur;cur = cur->_left;}else if (cur->_val < val){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(val);if (parent->_val < val){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//调整平衡因子while (parent){if (cur == parent->_right){parent->_bf++;}else{parent->_bf--;}if (parent->_bf == 0){break;}else if (parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//ROTATE//1. 右单旋if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}//2. 左单旋else if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}//3. 左右单旋else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}//4. 右左单旋else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}break;}else{assert(false);}}return true;}//遍历void Inorder(){_Inorder(_root);}//判断是否是平衡二叉树bool IsBalance(){return _IsBalance(_root);}int Height(){return _Height(_root);}protected:int _Height(Node* root){if (root == nullptr)return 0;return max(_Height(root->_right), _Height(root->_left)) + 1;}bool _IsBalance(Node* root){if (root == nullptr)return true;int leftsize = _Height(root->_left);int rightsize = _Height(root->_right);//检查右子树 - 左子树 < 2if (abs(rightsize - leftsize) >= 2){return false;}//检查平衡因子是否正确if (rightsize - leftsize != root->_bf)return false;return _IsBalance(root->_right)&& _IsBalance(root->_left);}void _Inorder(Node* root){if (root == nullptr){return;}_Inorder(root->_left);cout << root->_val << endl;_Inorder(root->_right);}//左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* pparent = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (parent == pparent->_right){pparent->_right = subR;}else{pparent->_left = subR;}subR->_parent = pparent;}subR->_bf = parent->_bf = 0;}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* pparent = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (parent == pparent->_right){pparent->_right = subL;}else{pparent->_left = subL;}subL->_parent = pparent;}subL->_bf = parent->_bf = 0;}//左右单旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if(bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 0){subLR->_bf = 0;subL->_bf = 0;parent->_bf = 0;}else{assert(false);}}//右左单旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 1){subRL->_bf = 0;parent->_bf = -1;subR->_bf = 0;}else if (bf == -1){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 1;}else if(bf == 0){subRL->_bf = 0;parent->_bf = 0;subR->_bf = 0;}else{assert(false);}}Node* _root = nullptr;
};

📁 总结

        以上就是本期【C++杂货铺】的主要内容了,主要验证了什么是AVL树,即一颗绝对平衡的二叉搜索树,通过平衡因子进行旋转平衡。展示了AVL树的模拟实现代码,深入理解了AVL树。

        最后,如果感觉本期内容对你有帮助,欢迎点赞,收藏,关注。Thanks♪(・ω・)ノ


http://www.ppmy.cn/news/1460252.html

相关文章

每日OJ题_记忆化搜索①_力扣509. 斐波那契数(四种解法)

目录 记忆化搜索概念和使用场景 力扣509. 斐波那契数 解析代码1_循环 解析代码2_暴搜递归 解析代码3_记忆化搜索 解析代码4_动态规划 记忆化搜索概念和使用场景 记忆化搜索是一种典型的空间换时间的思想&#xff0c;可以看成带备忘录的爆搜递归。 搜索的低效在于没有能够…

Chrome的常用操作总结

Chrome的常用操作总结 最近的自己真的好忙啊,好久真好久没有写博客了,今天我就趁着周末的这段时间总结一下最近自己的用的Chrome浏览器常用的命令 不得不说: 就是特么的丝滑!吊打一切浏览器(不接受反驳哈哈哈)因为反驳我也不听嘻嘻 用好快捷键,就是事半功倍!!!重要的事儿说一遍…

2024年最新消息预知在线客服系统源码

源码说明&#xff1a; 下 载 地 址 &#xff1a; runruncode.com/php/19755.html - 新增消息预知功能&#xff0c;可以提前查看即将收到的消息。 - 新增消息撤回功能&#xff0c;可以撤回已发送的消息。 - 新增消息已读未读标记&#xff0c;可以标记消息为已读或未读。 -…

德国储能项目锂电池储能集装箱突发火灾:安全挑战再引关注

2024年4月27日&#xff0c;德国尼尔莫尔商业区的一起锂电池储能集装箱火灾事件引起了全球关注。这起事故不仅导致两名消防员在救援过程中受伤&#xff0c;更暴露了储能系统在安全领域亟待解决的重要问题。 根据德国消防队的出警记录&#xff0c;火灾发生在晚上9点前不久。消防人…

互动科技如何强化法治教育基地体验?

近年来&#xff0c;多媒体互动技术正日益融入我们生活的各个角落&#xff0c;法治教育领域亦不例外。步入法治教育基地&#xff0c;我们不难发现&#xff0c;众多创新的多媒体互动装置如雨后春笋般涌现&#xff0c;这些装置凭借前沿的科技手段&#xff0c;不仅极大地丰富了法制…

Unity数据持久化之Json

目录 Json概述Json文件格式Json配置规则Excel转Json C#读取存储Json文件JsonUtlityJsonUtlity序列化JsonUtility反序列化 LitJsonLitJson序列化LitJson反序列化JsonUtility和LitJson对比 Json概述 Json是什么? 全称:JavaScript对象简谱(JavaScript Object Notation) Json是国…

leetcode 797.所有可能的路径

思路&#xff1a;dfs。 其实很简单&#xff0c;我们只需要和昨天做的题一样&#xff0c;直接遍历所给数组中的元素&#xff0c;因为这里的数组意义已经很清楚了&#xff0c;就是当前位置的结点和哪一个顶点有联系。 注意&#xff1a;在存储路径的时候&#xff0c;我们需要按顺…

Java高并发场景(银行转账问题)

最近面试问到了银行转账的高并发问题&#xff0c;回答的不是很理想&#xff0c;小编整理了下&#xff0c;题目大概如下&#xff1a; 有一张银行账号表&#xff08;银行账号字段、金额字段&#xff09;&#xff0c;A账号要给B账号转账&#xff0c;A扣款&#xff0c;B收款&#x…