ES相关性计算原理

news/2024/9/23 14:00:03/

了解es搜索过程中的相关性计算原理,对判断当前应用场景是否适合使用es来召回相关结果至关重要。本篇博文尝试对es在每一个节点执行搜索时如何计算query和经由倒排索引查询到的对应字段文本之间的相关性做简要说明。

ES搜索过程(节点层面)

ES的搜索过程具体到每一个节点可以简单地描述为三个步骤:

分词
计算相关性
查询解析
按分词结果执行term查询
按相关性排序,返回优先队列顺序长度的结果

当我们在ES中使用关键字搜索文档时,会得到由from+size指定的窗口大小多个文档,这些文档按照max_score的大小从高到低排列。毫无疑问,max_score衡量了查询结果和关键字之间的相似度或者说相关度大小,那么你是否好奇过它是如何计算出来的,本篇博文就来谈谈max_score的计算过程。

max_score_10">max_score如何计算

tf-idf公式

自然语言处理有一个计算文档权重的tf-idf公式(tf*idf),max_score的计算,也主要使用该公式。其中TF词频(Term Frequency)指的是词条t在文档中出现的频率IDF逆向文件频率(Inverse Document Frequency)指的是包含词条t的文档总数/全部文档总数的倒数取对数(逆向的意思就是取倒数,即全部文档总数/包含词条t的文档总数)。

tf不难理解,同一个文档中出现频率越高的词重要程度越高,idf是为了排除同时在多个文档出现的高频词,比如定冠词the、a的在同一个文档中词频很高,且在多个文档中出现,但是并没有什么实际意义,因而取倒数作为一种重要性上的惩罚

tf-idf公式的核心思想是:如果某个词条在一篇文章中出现的频率TF很高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。

max_score_18">max_score计算公式

max_score计算公式如下,max_score = b o o s t ∗ t f ∗ i d f =boost * tf * idf =boosttfidf,其中tfidf的计算稍有不同,下文有详细说明,boost可以手动指定,用来控制查询词条的权重。

参数含义取值示例
boost词条权重2.2(基础值)* 当前字段查询权重(默认为1,可以手动指定)
tf词频0.66753393
idf逆文档频率6.2964954
max_score得分 9.246874 = 2.2 × 1 × 0.66753393 × 6.2964954 9.246874 = 2.2\times1 \times 0.66753393\times6.2964954 9.246874=2.2×1×0.66753393×6.2964954

在search时,通过指定参数explain=true,即可在返回的_explanation字段内看到max_score的计算过程和中间结果:

GET /test_index/_search?explain=true
{"query": {"match": {"test_field": "测试用query"}        }
}

上述示例查询结果如下:

{... # 省略其他字段"_explanation" : {"value" : 9.246874,"description" : "sum of:","details" : [{"value" : 9.246874,"description" : "weight(test_field:升级 in 398) [PerFieldSimilarity], result of:","details" : [{"value" : 9.246874,"description" : "score(freq=1.0), product of:","details" : [{"value" : 2.2,"description" : "boost","details" : [ ]},{"value" : 6.2964954,"description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:","details" : [{"value" : 1,"description" : "n, number of documents containing term","details" : [ ]},{"value" : 813,"description" : "N, total number of documents with field","details" : [ ]}]},{"value" : 0.66753393,"description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:","details" : [{"value" : 1.0,"description" : "freq, occurrences of term within document","details" : [ ]},{"value" : 1.2,"description" : "k1, term saturation parameter","details" : [ ]},{"value" : 0.75,"description" : "b, length normalization parameter","details" : [ ]},{"value" : 2.0,"description" : "dl, length of field","details" : [ ]},{"value" : 9.088561,"description" : "avgdl, average length of field","details" : [ ]}]}]}]}]}
}

下面我们来仔细研究一下这里面的每一项。

计算tf

tf(Term Frequency,词频):搜索文本分词后各个词条(term)在被查询文档的相应字段中出现的频率,频率越大,相关性越高,得分就越高。

{"value" : 0.66753393,"description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:","details" : [{"value" : 1.0,"description" : "freq, occurrences of term within document","details" : [ ]},{"value" : 1.2,"description" : "k1, term saturation parameter","details" : [ ]},{"value" : 0.75,"description" : "b, length normalization parameter","details" : [ ]},{"value" : 2.0,"description" : "dl, length of field","details" : [ ]},{"value" : 9.088561,"description" : "avgdl, average length of field","details" : [ ]}]
}

t f = f r e q f r e q + k 1 × ( 1 − b ) + b × d l a v g d l tf=\frac{freq}{freq+k1\times(1-b)+b\times \frac{dl}{avgdl}} tf=freq+k1×(1b)+b×avgdldlfreq

参数含义示例取值
freq文档中词条出现的次数1.0
k1词条饱和参数1.2(默认值)
b长度规格化参数(平衡词条长度对于整个文档的影响程度)0.75(默认值)
dl搜索的关键词在当前文档中的分解字段长度2.0
avgdl查询出来的所有文档被字段分解长度总和/查询文档总数9.088561

可以理解为自然语言处理中的tf做了一定程度的正则化

计算idf

idf(Inverse Document Frequency,逆文档频率):搜索文本中分词后各个词条(term)在整个索引的所有文档中出现的频率倒数,频率越大,频率倒数越小,相关性越低,得分就越低。

{"value" : 6.2964954,"description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:","details" : [{"value" : 1,"description" : "n, number of documents containing term","details" : [ ]},{"value" : 813,"description" : "N, total number of documents with field","details" : [ ]}]
}

i d f = l o g ( 1 + ( N − n + 0.5 ) n + 0.5 ) idf=log(\frac{1+(N-n+0.5)}{n+0.5}) idf=log(n+0.51+(Nn+0.5))

参数含义示例取值
n包含查询词条的文档总数1
N包含查询字段的文档总数813

同样也可以理解为自然语言处理中的idf做了一定程度的正则化

boost查询权重

boost在同一个字段匹配多个词条时才有实际意义,它用来控制每个词条的计算相关度的权重。

示例查询:

GET /test_index/_search?explain=true{"query": {"bool": {"should": [{"match": {"test_field": {"query": "xxx","boost": 1}}},{"match": {"test_field": {"query": "yyy","boost": 2}}},{"match": {"test_field": {"query": "zzz","boost": 3}}}]}}
}

在上面的搜索计算相关度时,文档命中词条xxx时指定boost=1计算max_score,命中命中词条yyy时指定boost=2计算max_score,命中词条zzz时指定boost=3计算max_score

参考文献

  1. ES系列–打分机制

http://www.ppmy.cn/news/1452092.html

相关文章

element的el-table 解决表格多页选择数据时,数据被清空

问题:切换页码时,勾选的数据会被清空 重点看我圈出来的,直接复制,注意,我这里 return row.productId;一般大家的是 return row.id,根据接口定的唯一变量 :row-key"getRowKeys"​​​​​​​:reserve-sele…

如何让 PDF 书签从杂乱无序整洁到明丽清新

1、拉取书签(详细步骤看文末扩展阅读) 原状态 —— 杂乱无序 自动整理后的状态 —— 错落有致,但摩肩接踵 2、开始整理 全选自动整理后的书签,剪切 访问中英混排排版优化 - 油条工具箱 https://utils.fun/cn-en 1 粘贴 → 2 …

C#实战—代码实现收发文件智能化

在信息化的今天,收发电子文档几乎是每个朋友都要经历的事情。比如班级学委和班长需要收发作业,企业管理者需要收发工作文件。但是!!! 每到要交结果时,往往会发现总会有一些人没有即使交上,50个…

深度学习之基于Tensorflow卷积神经网络智能体操健身系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 一、项目背景 随着人们健康意识的提高和数字化技术的快速发展,智能健身系统逐渐成为健身领域的新趋势。…

在线音频,没有新故事

图片|自象限拍摄 ©自象限原创 作者丨艾AA 编辑丨罗辑 没有一家公司的IPO之路如喜马拉雅这样曲折。一而再,再而三,从2021年9月,到2022年3月,每一次都似乎触手可及,却又每一次都在最后关头功亏一篑。…

相差8小时:时区设置导致docker中的openGauss时间问题

文章目录 (一)问题(二)解决(2.1)确认服务器时间(2.2)确认和修改docker时间(2.2.1)失败的尝试(2.2.2)成功的尝试 (2.2&…

Redis 实战2

系列文章目录 本文将从字典的实现、哈希算法、解决键冲突、rehash、渐进式rehash几方面来阐述 Redis 实战Ⅱ 系列文章目录字典的实现哈希算法解决键冲突rehash渐进式 rehash渐进式 rehash 执行期间的哈希表操作 字典 API总结 字典的实现 Redis 的字典使用哈希表作为底层实现&…