【 书生·浦语大模型实战营】学习笔记(六):Lagent AgentLego 智能体应用搭建

news/2024/11/17 6:21:18/

在这里插入图片描述

🎉AI学习星球推荐: GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于 前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI 1;;爱好者学习,性价比非常高!加入星球➡️点击链接

Lagent__AgentLego__4">【 书生·浦语大模型实战营】学习笔记(六):Lagent & AgentLego 智能体应用搭建

👨‍💻导读: 本篇笔记内容主要为智能体Lagent& AgentLego ,主要对智能体应用理论部分及具体搭建流程详细介绍,并分别进行实战应用,欢迎大家交流学习!

本次学习资料

1.【视频】:Lagent & AgentLego 智能体应用搭建

2.【文档】:https://github.com/InternLM/Tutorial/blob/camp2/agent/lagent.md#1-lagent-web-demo

3.【作业】:https://github.com/InternLM/Tutorial

完成 Lagent Web Demo 使用,并在作业中上传截图。文档可见 Lagent Web Demo
完成 AgentLego 直接使用部分,并在作业中上传截图。文档可见 直接使用 AgentLego。

4.【环境】开发机:InternStudio 在这里插入图片描述

理论部分

智能体组成

大脑:作为控制器,承担记忆、思考和决策任务。接受来自感知模块的信息,并采取相应动作。
感知:对外部环境的多模态信息进行感知和处理。包括但不限于图像、音频、视频、传感器等。
动作:利用并执行工具以影响环境。工具可能包括文本的检索、调用相关APL、操控机械臂等。

智能体范式

在这里插入图片描述

AutoGPT
在这里插入图片描述

AutoGPT、ReWoo、ReACT

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Lagent_49">Lagent介绍

Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。

在这里插入图片描述

AgentLego__56">AgentLego 是什么

AgentLego 是一个提供了多种开源工具 API 的多模态工具包,旨在像是乐高积木一样,让用户可以快速简便地拓展自定义工具,从而组装出自己的智能体。通过 AgentLego 算法库,不仅可以直接使用多种工具,也可以利用这些工具,在相关智能体框架(如 Lagent,Transformers Agent 等)的帮助下,快速构建可以增强大语言模型能力的智能体

在这里插入图片描述

两者关系:
在这里插入图片描述

在这里插入图片描述
上图总结参考:https://blog.csdn.net/haidizym/article/details/138044672

Lagent_71">1.1 Lagent:轻量级智能体框架

安装环境

# 新建环境
mkdir -p /root/agent
studio-conda -t agent -o pytorch-2.1.2#下载github有关仓库
cd /root/agent
git clone https://gitee.com/internlm/agentlego.git
git clone https://gitee.com/internlm/lagent.git
git clone -b camp2 https://gitee.com/internlm/Tutorial.git# 激活环境并安装对应工具包
conda activate agent
cd lagent && git checkout 581d9fb && pip install -e . && cd ..
cd agentlego && git checkout 7769e0d && pip install -e . && cd ..
pip install lmdeploy==0.3.0

Lagent_91">1.2 Lagent:轻量级智能体框架

Lagent_Web_Demo_93">Lagent Web Demo

conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \--server-name 127.0.0.1 \--model-name internlm2-chat-7b \--cache-max-entry-count 0.1

在这里插入图片描述

2.启动并使用 Lagent Web Demo

新建的 terminal 中执行下述命令,启动 Lagent Web Demo

conda activate agent
cd /root/agent/lagent/examples
streamlit run internlm2_agent_web_demo.py --server.address 127.0.0.1 --server.port 7860

在这里插入图片描述

在等待 LMDeploy 的 api_server 与 Lagent Web Demo 完全启动后,在本地进行端口映射,将 LMDeploy api_server 的23333端口以及 Lagent Web Demo 的7860端口映射到本地。执行:

ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的 ssh 41562

效果:

在这里插入图片描述

在这里插入图片描述

Lagent__129">1.3 用 Lagent 自定义工具

使用 Lagent 自定义工具主要分为以下几步:

  • 继承 BaseAction 类 实现简单工具的 run 方法;
  • 或者实现工具包内每个子工具的功能 简单工具的 run 方法可选被
    tool_api 装饰;
  • 工具包内每个子工具的功能都需要被 tool_api 装饰

目标:实现一个调用和风天气 API 的工具以完成实时天气查询的功能

首先通过touch /root/agent/lagent/lagent/actions/weather.py(大小写敏感)新建工具文件,该文件内容如下:

import json
import os
import requests
from typing import Optional, Typefrom lagent.actions.base_action import BaseAction, tool_api
from lagent.actions.parser import BaseParser, JsonParser
from lagent.schema import ActionReturn, ActionStatusCodeclass WeatherQuery(BaseAction):"""Weather plugin for querying weather information."""def __init__(self,key: Optional[str] = None,description: Optional[dict] = None,parser: Type[BaseParser] = JsonParser,enable: bool = True) -> None:super().__init__(description, parser, enable)key = os.environ.get('WEATHER_API_KEY', key)if key is None:raise ValueError('Please set Weather API key either in the environment ''as WEATHER_API_KEY or pass it as `key`')self.key = keyself.location_query_url = 'https://geoapi.qweather.com/v2/city/lookup'self.weather_query_url = 'https://devapi.qweather.com/v7/weather/now'@tool_apidef run(self, query: str) -> ActionReturn:"""一个天气查询API。可以根据城市名查询天气信息。Args:query (:class:`str`): The city name to query."""tool_return = ActionReturn(type=self.name)status_code, response = self._search(query)if status_code == -1:tool_return.errmsg = responsetool_return.state = ActionStatusCode.HTTP_ERRORelif status_code == 200:parsed_res = self._parse_results(response)tool_return.result = [dict(type='text', content=str(parsed_res))]tool_return.state = ActionStatusCode.SUCCESSelse:tool_return.errmsg = str(status_code)tool_return.state = ActionStatusCode.API_ERRORreturn tool_returndef _parse_results(self, results: dict) -> str:"""Parse the weather results from QWeather API.Args:results (dict): The weather content from QWeather APIin json format.Returns:str: The parsed weather results."""now = results['now']data = [f'数据观测时间: {now["obsTime"]}',f'温度: {now["temp"]}°C',f'体感温度: {now["feelsLike"]}°C',f'天气: {now["text"]}',f'风向: {now["windDir"]},角度为 {now["wind360"]}°',f'风力等级: {now["windScale"]},风速为 {now["windSpeed"]} km/h',f'相对湿度: {now["humidity"]}',f'当前小时累计降水量: {now["precip"]} mm',f'大气压强: {now["pressure"]} 百帕',f'能见度: {now["vis"]} km',]return '\n'.join(data)def _search(self, query: str):# get city_codetry:city_code_response = requests.get(self.location_query_url,params={'key': self.key, 'location': query})except Exception as e:return -1, str(e)if city_code_response.status_code != 200:return city_code_response.status_code, city_code_response.json()city_code_response = city_code_response.json()if len(city_code_response['location']) == 0:return -1, '未查询到城市'city_code = city_code_response['location'][0]['id']# get weathertry:weather_response = requests.get(self.weather_query_url,params={'key': self.key, 'location': city_code})except Exception as e:return -1, str(e)return weather_response.status_code, weather_response.json()

获取 API KEY。首先打开 https://dev.qweather.com/docs/api/ :
在这里插入图片描述

重启服务:

conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \--server-name 127.0.0.1 \--model-name internlm2-chat-7b \--cache-max-entry-count 0.1
export WEATHER_API_KEY=获取的API KEY
conda activate agent
cd /root/agent/Tutorial/agent
streamlit run internlm2_weather_web_demo.py --server.address 127.0.0.1 --server.port 7860
#本地进行端口映射:
ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 41562

效果:

在这里插入图片描述

AgentLego_273">2.1 AgentLego:组装智能体“乐高”

直接使用 AgentLego

cd /root/agent
wget http://download.openmmlab.com/agentlego/road.jpg
conda activate agent
pip install openmim==0.3.9
mim install mmdet==3.3.0

通过touch /root/agent/direct_use.py(大小写敏感)的方式在 /root/agent 目录下新建 direct_use.py 以直接使用目标检测工具,direct_use.py 的代码如下:

import reimport cv2
from agentlego.apis import load_tool# load tool
tool = load_tool('ObjectDetection', device='cuda')# apply tool
visualization = tool('/root/agent/road.jpg')
print(visualization)# visualize
image = cv2.imread('/root/agent/road.jpg')preds = visualization.split('\n')
pattern = r'(\w+) \((\d+), (\d+), (\d+), (\d+)\), score (\d+)'for pred in preds:name, x1, y1, x2, y2, score = re.match(pattern, pred).groups()x1, y1, x2, y2, score = int(x1), int(y1), int(x2), int(y2), int(score)cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 1)cv2.putText(image, f'{name} {score}', (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 1)cv2.imwrite('/root/agent/road_detection_direct.jpg', image)

python /root/agent/direct_use.py

推理前:

Inference
truck (345, 428, 528, 599), score 83
car (771, 510, 837, 565), score 81
car (604, 518, 677, 569), score 75
person (866, 503, 905, 595), score 74
person (287, 513, 320, 596), score 74
person (964, 501, 999, 604), score 72
person (1009, 503, 1047, 602), score 69
person (259, 510, 279, 575), score 65
car (1074, 524, 1275, 691), score 64
person (993, 508, 1016, 597), score 62
truck (689, 483, 764, 561), score 62
bicycle (873, 551, 903, 602), score 60
person (680, 523, 699, 567), score 55
bicycle (968, 551, 996, 609), score 53
bus (826, 482, 930, 560), score 52
bicycle (1011, 551, 1043, 617), score 51
在这里插入图片描述

推理后

在这里插入图片描述

2.2 智能体工具使用

修改代码:
在这里插入图片描述

使用 LMDeploy 部署,由于 AgentLego 的 WebUI 需要用到 LMDeploy 所启动的 api_server。

#启动一个 api_server.
conda activate agent
lmdeploy serve api_server /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b \--server-name 127.0.0.1 \--model-name internlm2-chat-7b \--cache-max-entry-count 0.1
#再新建一个 terminal ,以启动 AgentLego WebUI
conda activate agent
cd /root/agent/agentlego/webui
python one_click.py
#本地映射
ssh -CNg -L 7860:127.0.0.1:7860 -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 41562

使用 AgentLego WebUI

在本地的浏览器页面中打开http://localhost:7860以使用 AgentLego WebUI。

在这里插入图片描述

在这里插入图片描述

效果

在这里插入图片描述

2.3 自定义工具

基于 AgentLego 构建自己的自定义工具(文档教程),自定义工具主要分为以下几步

继承 BaseTool 类
修改 default_desc 属性(工具功能描述)
如有需要,重载 setup 方法(重型模块延迟加载)
重载 apply 方法(工具功能实现)

通过touch /root/agent/agentlego/agentlego/tools/magicmaker_image_generation.py(大小写敏感)的方法新建工具文件。该文件的内容如下:

import json
import requestsimport numpy as npfrom agentlego.types import Annotated, ImageIO, Info
from agentlego.utils import require
from .base import BaseToolclass MagicMakerImageGeneration(BaseTool):default_desc = ('This tool can call the api of magicmaker to ''generate an image according to the given keywords.')styles_option = ['dongman',  # 动漫'guofeng',  # 国风'xieshi',   # 写实'youhua',   # 油画'manghe',   # 盲盒]aspect_ratio_options = ['16:9', '4:3', '3:2', '1:1','2:3', '3:4', '9:16']@require('opencv-python')def __init__(self,style='guofeng',aspect_ratio='4:3'):super().__init__()if style in self.styles_option:self.style = styleelse:raise ValueError(f'The style must be one of {self.styles_option}')if aspect_ratio in self.aspect_ratio_options:self.aspect_ratio = aspect_ratioelse:raise ValueError(f'The aspect ratio must be one of {aspect_ratio}')def apply(self,keywords: Annotated[str,Info('A series of Chinese keywords separated by comma.')]) -> ImageIO:import cv2response = requests.post(url='https://magicmaker.openxlab.org.cn/gw/edit-anything/api/v1/bff/sd/generate',data=json.dumps({"official": True,"prompt": keywords,"style": self.style,"poseT": False,"aspectRatio": self.aspect_ratio}),headers={'content-type': 'application/json'})image_url = response.json()['data']['imgUrl']image_response = requests.get(image_url)image = cv2.cvtColor(cv2.imdecode(np.frombuffer(image_response.content, np.uint8), cv2.IMREAD_COLOR),cv2.COLOR_BGR2RGB)return ImageIO(image)

注册新工具。修改 /root/agent/agentlego/agentlego/tools/init.py 文件,将我们的工具注册在工具列表中.

from .base import BaseTool
from .calculator import Calculator
from .func import make_tool
from .image_canny import CannyTextToImage, ImageToCanny
from .image_depth import DepthTextToImage, ImageToDepth
from .image_editing import ImageExpansion, ImageStylization, ObjectRemove, ObjectReplace
from .image_pose import HumanBodyPose, HumanFaceLandmark, PoseToImage
from .image_scribble import ImageToScribble, ScribbleTextToImage
from .image_text import ImageDescription, TextToImage
from .imagebind import AudioImageToImage, AudioTextToImage, AudioToImage, ThermalToImage
from .object_detection import ObjectDetection, TextToBbox
from .ocr import OCR
from .scholar import *  # noqa: F401, F403
from .search import BingSearch, GoogleSearch
from .segmentation import SegmentAnything, SegmentObject, SemanticSegmentation
from .speech_text import SpeechToText, TextToSpeech
from .translation import Translation
from .vqa import VQA
+ from .magicmaker_image_generation import MagicMakerImageGeneration__all__ = ['CannyTextToImage', 'ImageToCanny', 'DepthTextToImage', 'ImageToDepth','ImageExpansion', 'ObjectRemove', 'ObjectReplace', 'HumanFaceLandmark','HumanBodyPose', 'PoseToImage', 'ImageToScribble', 'ScribbleTextToImage','ImageDescription', 'TextToImage', 'VQA', 'ObjectDetection', 'TextToBbox', 'OCR','SegmentObject', 'SegmentAnything', 'SemanticSegmentation', 'ImageStylization','AudioToImage', 'ThermalToImage', 'AudioImageToImage', 'AudioTextToImage','SpeechToText', 'TextToSpeech', 'Translation', 'GoogleSearch', 'Calculator',
-     'BaseTool', 'make_tool', 'BingSearch'
+     'BaseTool', 'make_tool', 'BingSearch', 'MagicMakerImageGeneration'
]

在重复2.2步骤即可运行结果。

在这里插入图片描述

总结

本篇笔记内容主要为智能体Lagent& AgentLego ,主要对智能体应用理论部分及具体搭建流程详细介绍,并分别进行实战应用,欢迎大家交流学习!

推荐学习笔记:

https://zhuanlan.zhihu.com/p/694305378

https://zhuanlan.zhihu.com/p/693818434


http://www.ppmy.cn/news/1451237.html

相关文章

UNIXRTC

这段代码是将写入的数据显示在OLED屏幕上,并进行读取。起初上电的时候可以发现W:后面为空,R:为0000 0000这是因为还没开始写入。按下按键后发现变换的数据是1235 5679,与我们写入的1234 5678不同,这是因为写入之前执行…

【CTF Reverse】XCTF GFSJ0487 game Writeup(反编译+逆向工程)

game 菜鸡最近迷上了玩游戏,但它总是赢不了,你可以帮他获胜吗 解法 放进 exeinfope 中分析。 拖入 IDA 中。shift f12 查看字符串。ctrl f 搜索 flag。 DATA XREF: sub_45E94028↑o Function 中搜索 sub_45E940。 flag 应该是在这里算出来的&#xff…

Git从旧的仓库迁移到新的仓库后clone lfs的文件出现错误

一、问题描述 利用git转移仓库从gitee的testA.git仓库到coding的testB.git利用命令 git clone --mirror gitgitee.com:dev/testA.git cd testA.git git push --mirror gitgit.e.coding.test.clund:dev/testB.git 可以迁移成功,但是在clone新的仓库时候会发现存在l…

2024智能科学与软件工程国际学术会议(ICISSE 2024)

2024智能科学与软件工程国际学术会议(ICISSE 2024) 会议简介 2024智能科学与软件工程国际学术会议(ICISSE 2024)将在北京隆重举行。本次会议汇集了全球智能科学和软件工程领域的专家学者,共同探讨该领域的最新研究成果和发展趋…

【Python编程实践1/3】模块

目录 目标 模块 import ​编辑 代码小结 题目 from...import 随机模块 代码小结 randint函数 骰子大战 choice函数 总结 目标 拧一颗螺丝,只会用到螺丝刀;但是修一台汽车,需要一整套汽修的工具。函数就像螺丝刀,可以帮…

ssm101珠宝首饰交易平台开发+jsp

珠宝首饰交易平台 摘 要 随着科学技术的飞速发展,各行各业都在努力与现代先进技术接轨,通过科技手段提高自身的优势;对于珠宝首饰交易平台当然也不能排除在外,随着网络技术的不断成熟,带动了珠宝首饰交易平台&#x…

文档笔记上线

Hello,我是"小恒不会java", 这些文档将会在后续依次开源,本文会不定时更新公布文档源代码地址 Matlab app designer java SpringBoot Django

【VueUse】超越基本功能的高级 Vue 元素操作

在vue开发中我们经常需要操作DOM元素,从简单的添加类到动态创建元素,这些操作都是不可避免的。而在VueUse库中,Elements相关API函数为我们提供了一系列强大而灵活的工具,帮助我们更轻松地处理DOM元素。无论是优雅地处理元素、动态…