hadoop学习---基于hive的航空公司客户价值的LRFCM模型案例

news/2024/9/23 6:06:00/

案例需求:

RFM模型的复习

       在客户分类中,RFM模型是一个经典的分类模型,模型利用通用交易环节中最核心的三个维度——最近消费(Recency)、消费频率(Frequency)、消费金额(Monetary)细分客户群体,从而分析不同群体的客户价值。在某些商业形态中,客户与企业产生连接的核心指标会因产品特性而改变。如互联网产品中,以上三项指标可以相应地变为下图中的三项:最近一次登录、登录频率、在线时长

商用航空行业LRFCM模型的推广:

我们说RFM模型由R(最近消费时间间隔)、F(消费频次)和M(消费总额)三个指标构成,通过该模型识别出高价值客户。但该模型并不完全适合所有行业,如航空行业,直接使用M指标并不能反映客户的真实价值,因为“长途低等舱”可能没有“短途高等舱”价值高。考虑到商用航空行业与一般商业形态的不同,决定在RFM模型的基础上,增加2个指标用于客户分群与价值分析,得到航空行业的LRFMC模型:

L:客户关系长度。客户加入会员的日期至观测窗口结束日期的间隔。(反映可能的活跃时长)

R:最近一次乘机时间。最近一次乘机日期至观测窗口结束日期的间隔。(反映当前的活跃状态)

F:乘机频率。客户在观测窗口期内乘坐飞机的次数。(反映客户的忠诚度)

M:飞行总里程。客户在观测窗口期内的飞行总里程。(反映客户对乘机的依赖性)

C:平均折扣率。客户在观测窗口期内的平均折扣率。(舱位等级对应的折扣系数,侧面反映客户价值高低)

-------------------------------------本次练习基于数据源提取上述五个指标分析航空客户商业价值。

数据源:数据源

数据指标说明:

 Hive操作:

 构建数据库表:

reate database air_data_base;
use air_data_base;
create table air_data_table(member_no string,ffp_date string,first_flight_date string,gender string,ffp_tier int,work_city string,work_province string,work_country string,age int,load_time string,flight_count int,bp_sum bigint,ep_sum_yr_1 int,ep_sum_yr_2 bigint,sum_yr_1 bigint,sum_yr_2 bigint,seg_km_sum bigint,weighted_seg_km double,last_flight_date string,avg_flight_count double,avg_bp_sum double,begin_to_first int,last_to_end int,avg_interval float,max_interval int,add_points_sum_yr_1 bigint,add_points_sum_yr_2 bigint,exchange_count int,avg_discount float,p1y_flight_count int,l1y_flight_count int,p1y_bp_sum bigint,1y_bp_sum bigint,ep_sum bigint,add_point_sum bigint,eli_add_point_sum bigint,l1y_eli_add_points bigint,points_sum bigint,l1y_points_sum float,ration_l1y_flight_count float,ration_p1y_flight_count float,ration_p1y_bps float,ration_l1y_bps float,point_notflight int)row format delimited fields terminated by ',';

 将数据源上传到Linux本地文件夹中,再从本地上传到hive数据库中:

load data local inpath '/home/hadoop/air_data.csv' overwrite into table air_data_table;
select * from air_data_table limit 20;

统计观测窗口的票价收入(SUM_YR_1)、观测窗口的总飞行公里数(SEG_KM_SUM)、
平均折扣率(AVG_DISCOUNT)三个字段的空值记录,并将结果保存到名为sum_seg_avg_null的表中:

create table sum_seg_avg_null as select * from
(select count(*) as sum_yr_1_null_count from air_data_table where sum_yr_1 is null) sum_yr_1,
(select count(*) as seg_km_sum_null from air_data_table where seg_km_sum is null) seg_km_sum,
(select count(*) as avg_discount_null from air_data_table where avg_discount is null) avg_discount;

统计观测窗口的SUM_YR_1(票价收入)、SEG_KM_SUM(总飞行公里数)、AVG_DISCOUNT(平均折扣率)三列的最小值sum_seg_avg_min表中:

create table sum_seg_avg_min as select
min(sum_yr_1) as sum_yr_1,
min(seg_km_sum) as seg_km_sum,
min(avg_discount) as avg_discount
from air_data_table;

 数据清洗:

过滤掉票价为空的记录、平均折扣率为0.0的记录、票价为0、平均折扣率不为0、总飞行公里数大于0的记录。

create table sas_not_0 as
select * from air_data_table
where sum_yr_1 is not null andavg_discount <> 0    andseg_km_sum > 0;

提取有用数据项:

create table flfasl as select ffp_date,load_time,flight_count,avg_discount,seg_km_sum,last_to_end from sas_not_0;
select * from flfasl limit 10;

 

--L的构造:会员入会时间距离观测窗口结束的月数 = 观测窗口的结束时间 - 入会时间 [单位:月]
--R的构造:客户最近一次乘坐公司飞机距观测窗口结束的月数 = 最后一次乘机时间至观测窗口末端时长[单位:月]
-F的构造:客户再观测窗口内乘坐公司飞机的次数 = 观测窗口的飞行次数[单位:次]
--M的构造:客户再观测时间内在公司累计的飞行里程 = 观测窗口总飞行公里数[单位:公里]
--C的构造:客户在观测时间内乘坐舱位所对应的折扣系数的平均值 = 平均折扣率 [单位:无]
create table lrfmc as
selectround((unix_timestamp(load_time,'yyyy/MM/dd')-unix_timestamp(ffp_date,'yyyy/MM/dd'))/(30*24*60*60),2) as l,round(last_to_end/30,2) as r,flight_count as f,seg_km_sum as m,round(avg_discount,2) as c
from flfasl;

 数据标准化:

create table standard_lrfmc asselect (lrfmc.l-minlrfmc.l)/(maxlrfmc.l-minlrfmc.l) as l,(lrfmc.r-minlrfmc.r)/(maxlrfmc.r-minlrfmc.r) as r,(lrfmc.f-minlrfmc.f)/(maxlrfmc.f-minlrfmc.f) as f,(lrfmc.m-minlrfmc.m)/(maxlrfmc.m-minlrfmc.m) as m,(lrfmc.c-minlrfmc.c)/(maxlrfmc.c-minlrfmc.c) as cfrom lrfmc,(select max(l) as l,max(r) as r,max(f) as f,max(m) as m,max(c) as c from lrfmc) as maxlrfmc,(select min(l) as l,min(r) as r,min(f) as f,min(m) as m,min(c) as c from lrfmc) as minlrfmc;

数据挖掘:(客户分类)未完待续…… 

参考资料:

26个数据分析案例——第二站:基于Hive的民航客户价值分析

航空公司客户价值分析模型LRFCM


http://www.ppmy.cn/news/1448728.html

相关文章

RabbitMQ笔记(基础篇)

视频&#xff1a; MQ基础-01.RabbitMQ课程介绍_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1mN4y1Z7t9?p1&vd_sourced0ea58f1127eed138a4ba5421c577eb1 一、RabbitMQ简介 1.同步调用 优势&#xff1a;时效性强&#xff0c;等待结果后才返回 劣势&#xff1…

获取淘宝商品销量数据接口

淘宝爬虫商品销量数据采集通常涉及以下几个步骤&#xff1a; 1、确定采集目标&#xff1a;需要明确要采集的商品类别、筛选条件&#xff08;如天猫、价格区间&#xff09;、销量和金额等数据。例如&#xff0c;如果您想了解“小鱼零食”的销量和金额&#xff0c;您需要设定好价…

Pytorch中保存模型的两种方法

目录 一、保存整个模型二、只保存模型参数 一、保存整个模型 这种方法会保存模型的整个定义&#xff08;包括网络结构和参数&#xff09;。这样保存的模型可以直接被加载并使用&#xff0c;但前提是保存和加载模型的代码环境需要完全一致。 保存模型时使用代码&#xff1a; …

【排序算法】第三章:快速排序(万字讲解,通俗易懂)

前言&#xff1a; 理解排序算法最好的方法就是&#xff1a;先单趟后整体 先从一个元素的一趟开始理解 再扩展到所有元素的排序 【下面用到的&#xff1a;随机数生成测试排序性能器的代码】 快速排序 快排绝对是所有排序中最麻烦的排序之一&#xff0c;但又是面试中最喜欢考的一…

spring Ai框架整合Ollama,调用本地大模型

Ollama使用 Ollama是一个用于在本地计算机上运行大模型的软件 软件运行后监听11434端口&#xff0c;自己写的程序要调大模型就用这个端口 ollama命令 ollama list&#xff1a;显示模型列表 ollama show&#xff1a;显示模型的信息 ollama pull&#xff1a;拉取模型 ollama pu…

AngularJS 的生命周期和基础语法

AngularJS 的生命周期和基础语法 文章目录 AngularJS 的生命周期和基础语法1. 使用步骤2. 生命周期钩子函数3. 点击事件4. if 语句1. if 形式2. if else 形式 5. for 语句6. switch 语句7. 双向数据绑定 1. 使用步骤 // 1. 要使用哪个钩子函数&#xff0c;就先引入 import { O…

水稻病害检测(YOLO数据集,多分类,稻瘟病、纹枯病、褐斑病、枯心病、霜霉病、水稻细菌性条纹斑病、稻苞虫)

是自己利用LabelImg工具进行手工标注&#xff0c;数据集制作不易&#xff0c;请尊重版权&#xff08;稻瘟病、纹枯病、褐斑病、枯心病、霜霉病、水稻细菌性条纹斑病、稻苞虫&#xff09; 如果需要yolv8检测模型和数据集放在一起的压缩包&#xff0c;可以关注&#xff1a;最新最…

白话机器学习1:分类问题中的评价指标

机器学习中的评价指标非常多&#xff0c;它们用来衡量模型的性能和预测能力。不同类型的机器学习任务可能需要不同的评价指标。以下是一些常见的评价指标&#xff0c;按照不同类型的机器学习任务分类&#xff1a; 对于分类问题&#xff1a; 准确率&#xff08;Accuracy&#…