Blender生成COLMAP数据集

news/2024/9/26 1:23:02/

最近在做3DGS方向,整理了一下Blender生成自己的数据集。

1 Introduction

在Blender中构建场景(light, object, camera),利用Blender的python脚本对其渲染,导出多视角下渲染出的RGB图和depth map,并将transform.json转为COLMAP格式,以便直接用于SfM初始化高斯点云。

2 Python script of Blender for generating RGB and depth map

利用如下python脚本,生成一组400*400的RGB图和detph map。


import os
import os.path as osp
import bpy
import numpy as np
import json
from mathutils import Vector, Matrix, Euler
from math import radiansW = 400
H = 400
NUM_OBJ = 5
OBJ_NAMES = {1: 'xxx',2: 'xxx',
}# save path
RESULTS_PATH = 'xxx'
os.makedirs(RESULTS_PATH, exist_ok=True)def listify_matrix(matrix):matrix_list = []for row in matrix:matrix_list.append(list(row))return matrix_listdef parent_obj_to_camera(b_camera):origin = (0, 0, 0.4)b_empty = bpy.data.objects.new("Empty", None)b_empty.location = originb_camera.parent = b_empty  # setup parentingscn = bpy.context.scenescn.collection.objects.link(b_empty)bpy.context.view_layer.objects.active = b_emptyreturn b_emptyscene = bpy.context.scene
scene.use_nodes = True
tree = scene.node_tree
links = tree.links
# Empty the node tree and initialize
for n in tree.nodes:tree.nodes.remove(n)    
render_layers = tree.nodes.new('CompositorNodeRLayers')# Set up rendering of depth map
depth_file_output = tree.nodes.new(type="CompositorNodeOutputFile")
depth_file_output.base_path = ''
depth_file_output.format.file_format = 'OPEN_EXR'
depth_file_output.format.color_depth = '32'
links.new(render_layers.outputs['Depth'], depth_file_output.inputs[0])# Background
scene.render.dither_intensity = 0.0
scene.render.film_transparent = Truecam = scene.objects['Camera']
cam.location = (0.0, -3.6, -1.0)
cam_constraint = cam.constraints.new(type='TRACK_TO')
cam_constraint.track_axis = 'TRACK_NEGATIVE_Z'
cam_constraint.up_axis = 'UP_Y'
b_empty = parent_obj_to_camera(cam)
cam_constraint.target = b_empty# Meta data to store in JSON file
meta_data = {'camera_angle_x': cam.data.angle_x,'img_h': H,'img_w': W
}
meta_data['frames'] = {}# Render with multi-camera
N_VIEW_X = 2
X_ANGLE_START = 0
X_ANGLE_END = -60
N_VIEW_Z = 15
Z_ANGLE_START = 0
Z_ANGLE_END = 360 # 337b_empty.rotation_euler = (X_ANGLE_START, 0, Z_ANGLE_START)
x_stepsize = (X_ANGLE_END - X_ANGLE_START) / N_VIEW_X
z_stepsize = (Z_ANGLE_END - Z_ANGLE_START) / N_VIEW_Zmeta_data['transform_matrix'] = {}
for vid_x in range(N_VIEW_X):b_empty.rotation_euler[0] += radians(x_stepsize)b_empty.rotation_euler[2] = Z_ANGLE_STARTfor vid_z in range(N_VIEW_Z):b_empty.rotation_euler[2] += radians(z_stepsize)img_path = osp.join(RESULTS_PATH, 'images')os.makedirs(img_path, exist_ok=True)vid = vid_x * N_VIEW_Z + vid_z   # Render scene.render.filepath = osp.join(img_path, 'color', 'image_%04d.png'%(vid))depth_file_output.base_path = osp.join(img_path, 'depth')depth_file_output.file_slots[0].path = 'image_%04d'%(vid)bpy.ops.render.render(write_still=True)print((vid_x, vid_z), cam.matrix_world)meta_data['transform_matrix'][f'camera_{vid :04d}'] = listify_matrix(cam.matrix_world)# save camera params
with open(osp.join(RESULTS_PATH, 'transforms.json'), 'w') as fw:json.dump(meta_data, fw, indent=4)

3 Read Depth map (.exr)


import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
import cv2
import numpy as np
import matplotlib.pyplot as plt
import pandas as pddepth_dir = 'D:\BlenderWorkplace\darkroom\source\output\images\depth'
for depth_name in os.listdir(depth_dir):depth = cv2.imread(depth_dir+'\\'+depth_name, cv2.IMREAD_UNCHANGED)[:, :, 0]print(depth_name, max(depth.flatten()), min(depth.flatten()))

4 Blender2COLMAP (transform.json->images.txt and cameras.txt)

Refer to https://blog.csdn.net/qq_38677322/article/details/126269726

将Blender生成的相机参数transform.json转为COLMAP格式的cameras.txt(内参)和images.txt(外参).

import numpy as np
import json
import os
import imageio
import mathblender2opencv = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
# 注意:最后输出的图片名字要按自然字典序排列,例:0, 1, 100, 101, 102, 2, 3...因为colmap内部是这么排序的
fnames = list(sorted(os.listdir('output/images/color')))
print(fnames)
fname2pose = {}
uni_pose = Nonewith open('output/transforms.json', 'r') as f:meta = json.load(f)fx = 0.5 * W / np.tan(0.5 * meta['camera_angle_x'])  # original focal length
if 'camera_angle_y' in meta:fy = 0.5 * H / np.tan(0.5 * meta['camera_angle_y'])  # original focal length
else:fy = fx
if 'cx' in meta:cx, cy = meta['cx'], meta['cy']
else:cx = 0.5 * Wcy = 0.5 * H
with open('created/sparse_/cameras.txt', 'w') as f:f.write(f'1 PINHOLE {W} {H} {fx} {fy} {cx} {cy}')idx = 1for cam, mat in meta['transform_matrix'].items():# print(cam, mat)fname = "image_"+cam.split('_')[1]+".png"pose = np.array(mat) @ blender2opencvfname2pose[fname] = pose
with open('created/sparse_/images.txt', 'w') as f:for fname in fnames:pose = fname2pose[fname]R = np.linalg.inv(pose[:3, :3])T = -np.matmul(R, pose[:3, 3])q0 = 0.5 * math.sqrt(1 + R[0, 0] + R[1, 1] + R[2, 2])q1 = (R[2, 1] - R[1, 2]) / (4 * q0)q2 = (R[0, 2] - R[2, 0]) / (4 * q0)q3 = (R[1, 0] - R[0, 1]) / (4 * q0)f.write(f'{idx} {q0} {q1} {q2} {q3} {T[0]} {T[1]} {T[2]} 1 {fname}\n\n')idx += 1
with open('created/sparse_/points3D.txt', 'w') as f:f.write('')

结果如下:
在这里插入图片描述
在这里插入图片描述

5 COLMAP-SfM过程 (对3DGS初始化)

5.1 提取图像特征

Input: source/output/images/color(渲染出的RGB图像路径)
Output: initial database.db

colmap feature_extractor --database_path database.db --image_path source/output/images/color

5.2 导入相机内参

Refer to https://www.cnblogs.com/li-minghao/p/11865794.html

由于我们的相机内参只有一组,无需脚本导入,只需打开colmap界面操作。
在这里插入图片描述

5.3 特征匹配

colmap exhaustive_matcher --database_path database.db

5.4 三角测量

colmap point_triangulator --database_path database.db --image_path source/output/images/color --input_path source/created/sparse --output_path source/triangulated/sparse

由此,输出的结果为cameras.bin, images.bin, points3D.bin,存放在source/triangulated/sparse(以上述代码为例)。


http://www.ppmy.cn/news/1426754.html

相关文章

对单片机的一点理解

前言 大一时学过一段时间的51单片机,后面就一直研究STM32和算法,最近工作搞51单片机有半年了,有一些自己的想法,跟公司的工程师也探讨了一些,结合聊天记录,写了这篇博客,希望对读者有帮助。 有…

新型大数据架构之湖仓一体(Lakehouse)架构特性说明——Lakehouse 架构(一)

文章目录 为什么需要新的数据架构?湖仓一体(Lakehouse)——新的大数据架构模式同时具备数仓与数据湖的优点湖仓一体架构存储层计算层 湖仓一体特性单一存储拥有数据仓库的查询性能存算分离开放式架构支持各种数据源类型支持各种使用方式架构简…

面试八股——集合——List

主要问题 数组 如果数组索引从0开始时,数组的寻址方式为: 如果数组索引从1开始时,数组的寻址方式为: 此时对于CPU来说增加了一个减法指令,降低寻址效率。 ArrayList⭐ ArrayList构造函数 尤其说一下第三个构造函数流…

js删除对象中值为null的属性

需求:在做编辑操作的时候,后端不需要值为null的数据,所以默认把编辑中值为null的数据传给他会编辑失败,所以前端做个筛选就行了 let obj {id: 1,name: "翠花",sex: 18,hobby: null,age: null,};// 使用Object.entries(…

游戏开发过程中,什么情况下用组件

在游戏开发过程中,使用组件的情境是多种多样的,它们主要用于实现游戏的各种功能和特性。以下是一些常见的情况,在这些情况下使用组件是非常合适的: 实体属性与行为分离 当需要将游戏实体的属性(如位置、速度、…

Don‘t fly solo! 量化之路,AI伴飞

在投资界,巴菲特与查理.芒格的神仙友谊,是他们财富神话之外的另一段传奇。巴菲特曾这样评价芒格:他用思想的力量拓展了我的视野,让我以火箭的速度,从猩猩进化到人类。 人生何幸能得到一知己。如果没有这样的机缘&…

27、链表-合并两个有序链表

思路: 这道题不需要集合放入两个链表再进行重排序,只需要两个指针,按大小进行遍历,代码如下: class Solution {/*** 1->3->5->7* 2->4->6->8->10->12* * 1->3->5->7* h c1* p* 2-…

Vue3: toRefs与toRef的基本使用

一、前言 本文主要介绍toRefs与toRef的基本使用。 二、内容 1、基本概念 作用: toRefs与toRef可以将一个响应式对象中的每一 个属性,转换为ref对象;不同 toRefs与toRef功能一致,但toRefs可以批量转换。 2、toRefs 如果把reactive定义的…