Spark-Scala语言实战(7)

news/2025/2/19 8:18:41/

在之前的文章中,我们学习了如何在IDEA中导入jars包,并做了一道例题,了解了RDD。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。

Spark-Scala语言实战(6)-CSDN博客文章浏览阅读695次,点赞15次,收藏24次。今天我会给大家带来如何在IDEA中导入jars包,以及使用SparkRDD,并正确使用它们同时也会给大家讲解一道实训题例。希望在本篇文章中,大家有所收获。也欢迎朋友们到评论区下一起交流学习,共同进步。https://blog.csdn.net/qq_49513817/article/details/137121524?spm=1001.2014.3001.5502

今天开始的文章,我会带给大家如何在spark的中使用我们的RDD方法,今天学习RDD方法中的map,sortby,collect三种方法。

目录

一、知识回顾

二、RDD方法

1.map

2.sortby

3.collect

拓展-RDD和DStream

1.RDD和DStream的区别

2.RDD和DStream的联系


一、知识回顾

导入jars包的过程在上一篇文章中以及讲解的很清楚了,图文一步一步带着做。

主要就是进入Libraries 添加java,然后选择spark的jars文件夹即可

如果还有不懂的朋友可以直接评论问我。

在就是文件的这几行代码

import org.apache.spark.{SparkConf, SparkContext}val conf=new SparkConf().setMaster("local").setAppName("123456")val sc=new SparkContext(conf)

这是配置与方法,记住它们的作用。

现在,开始今天的学习吧

二、RDD方法

1.map

  • map()方法是一种基础的RDD转换操作,可以对RDD中的每一个数据元素通过某种函数进行转换并返回新的RDD
  • map()方法是转换操作,不会立即进行计算。
  • 转换操作是创建RDD的第二种方法,通过转换已有RDD生成新的RDD。因为RDD是一个不可变的集合,所以如果对RDD数据进行了某种转换,那么会生成一个新的RDD

例:

import org.apache.spark.{SparkConf, SparkContext}  // 定义一个名为p1的Scala对象  
object p1 {  // 定义main方法,作为程序的入口点  def main(args: Array[String]): Unit = {  // 创建一个Spark配置对象,并设置运行模式为"local"(本地模式),应用程序名称为"p2"  val conf = new SparkConf().setMaster("local").setAppName("p2")  // 使用Spark配置对象创建一个SparkContext对象,SparkContext是Spark功能的入口点  val sc = new SparkContext(conf)  // 创建一个包含整数的列表,并使用parallelize方法将其转换为RDD  val ppp = sc.parallelize(List(1, 2, 3, 4, 5))  // 使用map操作将RDD中的每个元素乘以2,并返回一个新的RDD  val ppppp = ppp.map(x => x * 2)  //oreach方法遍历并打印每个元素  ppppp.collect().foreach(println)  }  
}

可以看到我们输出的在原列表上*2,达到了代码预期效果

2.sortby

  • sortBy()方法用于对标准RDD进行排序,有3个可输入参数,说明如下。
  • 1个参数是一个函数f:(T) => K,左边是要被排序对象中的每一个元素,右边返回的值是元素中要进行排序的值。
  • 2个参数是ascending,决定排序后RDD中的元素是升序的还是降序的,默认是true,即升序排序,如果需要降序排序那么需要将参数的值设置为false
  • 3个参数是numPartitions,决定排序后的RDD的分区个数,默认排序后的分区个数和排序之前的分区个数相等,即this.partitions.size
  • 第一个参数是必须输入的,而后面的两个参数可以不输入。

例:

import org.apache.spark.{SparkConf, SparkContext}  object p1 {   def main(args: Array[String]): Unit = {     val conf = new SparkConf().setMaster("local").setAppName("p2")  // 使用配置好的conf对象创建一个SparkContext对象sc。   val sc = new SparkContext(conf)  // 使用SparkContext的parallelize方法将包含整数的序列转换成一个RDD。  // 这个RDD现在可以在Spark上并行处理。  val ppp = sc.parallelize(Seq(5, 1, 9, 3, 7))  // 对ppp RDD中的元素进行排序。  // 使用sortBy方法,并传递一个函数x => x作为参数,表示按照元素本身的值进行排序(升序)。  val pppp = ppp.sortBy(x => x)   // 这将返回一个包含RDD所有元素的数组,存储在ppppp中。  val ppppp = pppp.collect()  // 使用foreach方法遍历数组ppppp中的每个元素,并使用println函数打印它们。  ppppp.foreach(println)  }  
}

看下输出可以看到我们的元素已经排序了

3.collect

  • collect()方法是一种行动操作,可以将RDD中所有元素转换成数组并返回到Driver端,适用于返回处理后的少量数据。
  • 因为需要从集群各个节点收集数据到本地,经过网络传输,并且加载到Driver内存中,所以如果数据量比较大,会给网络传输造成很大的压力。
  • 因此,数据量较大时,尽量不使用collect()方法,否则可能导致Driver端出现内存溢出问题。

例:

import org.apache.spark.{SparkConf, SparkContext}object p1 {def main(args: Array[String]): Unit = {val conf=new SparkConf().setMaster("local").setAppName("p2")val sc=new SparkContext(conf)val pp = sc.parallelize(Seq(1, 2, 3, 4, 5))val ppp = pp.collect()ppp.foreach(println)}
}

collect的作用是将RDD中的数据收集到驱动程序中,所以这里运行看不出区别。

拓展-RDD和DStream

在上一篇文章中,我们了解到了RDD,那么DStream是什么呢,我们先来了解一下:

DStream(离散流)是Spark Streaming提供的一种高级抽象,代表了一个持续不断的数据流。DStream的内部实际上是一系列持续不断产生的RDD,每个RDD包含特定时间间隔的数据。DStream的创建可以通过输入数据源如Kafka、Flume,或者通过对其他DStream应用高阶函数如map、reduce、join、window来实现。

1.RDD和DStream的区别

RDDDStream
定义弹性分布式数据集,是Spark中最基本的数据处理模型。离散流,是Spark Streaming提供的一种高级抽象,代表一个持续不断的数据流。
数据结构静态的、不可变的数据集,可以划分为多个分区。动态的、连续的数据流,内部由一系列RDD组成。
数据处理方式批处理,适用于静态数据的处理和分析。流处理,适用于实时数据流的处理和分析。
时间维度无特定的时间维度,主要关注数据的分区和处理。具有时间维度,每个RDD代表一段时间内的数据。
操作方式对整个RDD进行操作,结果生成新的RDD。对DStream进行操作,结果生成新的DStream,底层转换为RDD操作。
应用场景大规模数据的批处理任务,如机器学习、数据挖掘等。实时数据流处理任务,如日志分析、实时监控等。
容错性具有容错性,数据丢失可以自动恢复。继承了RDD的容错性特点。
与Spark的关系Spark的核心组件,用于构建各种数据处理和分析任务。Spark Streaming的核心组件,用于处理实时数据流。

2.RDD和DStream的联系

RDDDStream
基础构建单元RDD是Spark的基本数据处理单元。DStream基于RDD构建,每个时间间隔内的数据对应一个RDD。
计算模型RDD支持分布式计算模型,数据被划分为多个分区进行并行处理。DStream继承了RDD的计算模型,对流数据进行分布式处理。
容错性RDD具有容错性,可以自动恢复丢失的数据。DStream同样具有容错性,因为它基于RDD构建。
操作方式RDD提供了一系列转换操作(如map、reduce)和动作操作(如collect、save)。DStream也提供了类似的操作,这些操作最终会转换为底层RDD的操作。
数据处理能力RDD适用于批处理任务,可以对大规模数据集进行处理和分析。DStream适用于实时流处理任务,可以对连续的数据流进行实时分析和处理。
底层实现DStream内部实际上是由一系列RDD组成的,每个RDD代表一段时间内的数据。DStream的操作最终会转换为RDD的操作,利用RDD的分布式计算能力。
扩展性RDD可以通过自定义操作进行扩展,支持更多的数据处理场景。DStream同样可以通过自定义操作和转换函数进行扩展,以满足特定的实时处理需求

http://www.ppmy.cn/news/1400441.html

相关文章

wpf 自定义命令

自定义命令 MyCommand.cs public class MyCommand : ICommand {private readonly Action<Object> execAction;private readonly Func<Object,bool> changedFunc;public event EventHandler? CanExecuteChanged;public MyCommand(Action<object> execAction…

书生·浦语大模型开源体系(一)论文精读笔记

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

科普:从神经网络到 Hugging Face——神经网络和深度学习简史

活中没有什么可怕的东西&#xff0c;只有需要理解的东西。—— 居里夫人 深度信念网络 2006年&#xff0c;加拿大多伦多大学教授杰弗里辛顿在研究如何训练多层神经网络&#xff0c;他已经在神经网络领域默默耕耘了三十多年&#xff0c;尽管在这个领域他算得上是泰斗级的人物&…

基于DBO-CNN-BiLSTM-Attention数据回归预测(多输入单输出)-附代码

DBO-CNN结合了深度学习中的卷积神经网络&#xff08;CNN&#xff09;和传统的Bag of Features方法。CNN用于提取图像的特征&#xff0c;通过多个卷积层和池化层&#xff0c;逐渐学习图像的层次化特征表示。然后&#xff0c;通过Bag of Features方法&#xff0c;对这些特征进行统…

鸿蒙系统,作为华为自主研发的一款全新操作系统

来自&#xff1a;dlshuhua.com/post/83698.html 鸿蒙系统&#xff0c;作为华为自主研发的一款全新操作系统&#xff0c;自推出以来便以其独特的特点和优势&#xff0c;吸引了众多用户的关注和喜爱。下面&#xff0c;我们就来详细介绍一下鸿蒙系统的几大特点。 首先&#xff0…

【I.MX6ULL移植】Ubuntu-base根文件系统移植

1.下载Ubuntu16.04根文件系统 http://cdimage.ubuntu.com/ 1 2 3 4 5 2.解压ubuntu base 根文件系统 为了存放 ubuntu base 根文件系统&#xff0c;先在 PC 的 Ubuntu 系统中的 nfs 目录下创建一个名为 ubuntu_rootfs 的目录&#xff0c;命令如下&#xff1a; 【注意&…

MrDoc寻思文档 个人wiki搭建

通过Docker快速搭建个人wiki&#xff0c;开源wiki系统用于知识沉淀&#xff0c;教学管理&#xff0c;技术学习 部署步骤 ## 拉取 MrDoc 代码 ### 开源版&#xff1a; git clone https://gitee.com/zmister/MrDoc.git### 专业版&#xff1a; git clone https://{用户名}:{密码…

万字详解PHP+Sphinx中文亿级数据全文检索实战(实测亿级数据0.1秒搜索耗时)

Sphinx查询性能非常厉害&#xff0c;亿级数据下输入关键字&#xff0c;大部分能在0.01~0.1秒&#xff0c;少部分再5秒之内查出数据。 Sphinx 官方文档&#xff1a;http://sphinxsearch.com/docs/sphinx3.html极简概括&#xff1a; 由C编写的高性能全文搜索引擎的开源组件&…