python绘图matplotlib——使用记录1

news/2024/11/8 0:13:40/

本博文来自于网络收集,如有侵权请联系删除

使用matplotlib绘图

  • 1 常用函数汇总
    • 1.1 plot
    • 1.2 legend
    • 1.3 scatter
    • 1.4 xlim
    • 1.5 xlabel
    • 1.6 grid
    • 1.7 axhline
    • 1.7 axvspan
    • 1.8 annotate
    • 1.9 text
    • 1.10 title
  • 2 常见图形绘制
    • 2.1 bar——柱状图
    • 2.2 barh——条形图
    • 2.3 hist——直方图
      • 堆积直方图
    • 阶梯型直方图
    • 2.4 pie——饼图
      • 示例1
      • 示例2
      • 内嵌环饼形图
    • 2.5 polar——极线图
    • 2.6 scatter——气泡图
    • 2.7 stem——棉棒图
    • 2.8 boxplot——箱线图
      • 示例1
      • 示例2
    • 2.9 errorbar——误差棒图
  • 3 常用统计图
    • 3.1 堆积柱状图
    • 3.2 堆积条形图
    • 3.3 并列柱状图
    • 3.4 并列条形图
    • 3.5 堆积折线图
    • 3.6 间断条形图
    • 3.7 阶梯图

matplotlib的具体用法 官网的介绍是最全的,此处只针对平时常用的绘图进行了记录

1 常用函数汇总

1.1 plot

reference:https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html
函数:plt.plot(x, y, c=‘r’, marker=‘o’, ls=‘-’, lw=1, ms=1, label=‘line1’)
参数:

  • x: x轴上的数值
  • y: y轴上的数值
  • marker:点的形状
  • c: color, 颜色
  • ls: Line Styles,如,‘-’,‘–’,‘-.’,‘:’
  • lw: linewidth,线条宽度
  • label: 标记图形内容的标签文本

注,plt.plot(x, y, ‘r^:’, lw=1, ms=5, label=‘line1’)
点的颜色、形状、线型通常写在一起,如
label需要与plt.legend配合使用,

1.2 legend

reference:https://matplotlib.org/stable/api/legend_api.html
函数:plt.legend(loc=‘best’)
参数:

  • loc:图例在途中的位置,如,‘upper right’, ‘lower left’, '‘upper center’'等

代码示例

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0.05, 10, 1000)
y = np.sin(x)plt.plot(x, y, marker='o', ls='-', c='r', lw=1, ms=1, label='line1')
# plt.plot(x, y, 'r^:', lw=1, ms=5, label='line1')
plt.legend(loc='best')
plt.show()

1.3 scatter

函数:plt.scatter(x, y, c=‘b’, label=‘scatter1’)
参数:

  • x: x轴上的数值
  • y: y轴上的数值
  • c:颜色
  • label: 标记图形内容的标签文本
import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0.05, 10, 50)
y = np.sin(x)
y2 = np.cos(x)plt.scatter(x, y, c='b', label='scatter1')
plt.scatter(x, y2, c='r', label='scatter1')
plt.legend()
plt.show()

在这里插入图片描述

1.4 xlim

函数:plt.xlim(xmin, xmax)
参数:

  • xmin: x轴上的最小值
  • ymin: x轴上的最大值
  • 平移性:plt.ylim(ymin, ymax)

1.5 xlabel

函数:plt.xlabel(string)
参数:

  • string: 标签文本内容
  • 平移性:plt.ylabel(string)

1.6 grid

函数:plt.grid(linestyle=‘:’, color="r)
参数:

  • linestyle: 网格线的线条风格
  • color: 网格线的线条颜色

1.7 axhline

绘制平行与x轴的水平参考线
函数:plt.axhline(y=0, c=‘b’, ls=‘–’, lw=2)
参数:

  • y: 水平参考线的出发点
  • c: 参考线的线条颜色
  • ls: 参考线的线条风格
  • lw: 参考线的线条宽度
  • 平移性: plt.axvline(), 绘制平行与y轴的参考线

1.7 axvspan

绘制垂直于x轴的参考区域。
函数:plt.axvspan(xmin=1, xmax=2, facecolor=‘y’, alpha=0.3)
参数:

  • xmin: 参考区域的起始位置。
  • ymin: 参考区域的终止位置。
  • facecolor: 参看区域的填充颜色。
  • alpha: 参考区域的填充颜色的透明度。
  • 平移性: axhspan()
import numpy as np
from matplotlib import pyplot as pltx = np.linspace(0.05, 10, 1000)
y = np.sin(x)plt.plot(x, y, ls='-.', c="c", label="sin(x)")plt.legend()plt.axvspan(xmin=4.0, xmax=6.0, facecolor="y", alpha=0.3)
plt.axhspan(ymin=0.0, ymax=0.5, facecolor="y", alpha=0.3)plt.show()

在这里插入图片描述

1.8 annotate

添加图形内容细节的指向型注释文本。
函数:plt.annotate(“maximum”, xy=(np.pi / 2, 1), xytext=((np.pi / 2) + 1, .8), weight=“bold”, color=‘b’, arrowprops=dict(arrowstyle=“->”, connectionstyle=“arc3”, color=“b”))
参数:

  • string: 图形内容的注释文本。
  • xy: 被注释图形内容的位置坐标。
  • xytext: 注释文本的位置坐标。
  • weight: 注释文本的字体粗细风格。
  • color: 注释文本的字体颜色。
  • arrowprops: 指示被注释内容的箭头的属性字典。
import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0.05, 10, 1000)
y = np.sin(x)plt.plot(x, y, ls="-.", lw=2, c="g", label='sin(x)')
plt.legend()plt.annotate("maximum", xy=(np.pi / 2, 1), xytext=((np.pi / 2) + 1, .8), weight="bold", color='black',arrowprops=dict(arrowstyle="->", connectionstyle="arc3", color="r"))plt.show()

在这里插入图片描述

1.9 text

添加图形内容细节的无指向型注释文本
函数:plt.text(4, 0.1, “y=sin(x)”, weight=“bold”, color=“b”)
参数:

  • x: 注释文本内容所在位置的横坐标
  • y: 注释文本内容所在位置的纵坐标
  • string: 注释文本内容
  • weight: 注释文本内容的粗细风格
  • color: 注释文本内容的字体颜色
import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0.05, 10, 1000)
y = np.sin(x)plt.plot(x, y, ls='-.', lw=2, c="c", label="sin(x)")plt.legend()
plt.text(4, 0.1, "y=sin(x)", weight="bold", color="b")
plt.show()

在这里插入图片描述

1.10 title

添加图形内容的标题
函数:plt.title(string)
参数:

  • string: 图形内容的标题文本

2 常见图形绘制

2.1 bar——柱状图

函数:plt.bar(x, y, align=“center”, color=“c”, tick_label=x_label, hatch=“/”)
参数:

  • x: 柱状图中的柱体标签值。
  • y: 柱状图中的柱体高度。
  • align: 柱体对齐方式
  • color: 柱体颜色
  • tick_label: 刻度标签值
  • alpha: 柱体的透明度
  • hatch: 柱体的填充样式,如"/", “\”, “|”, "-"等,符号字符串的符号数量越多,柱体的几何图形的密集程度就越高。
import matplotlib as mpl
import matplotlib.pyplot as plt
from plotly.figure_factory import npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex = [i for i in range(0, 10, 1)]
y = np.random.randint(1, 20, size=10)x_label = [chr(i) for i in range(97, 97+10, 1)]
plt.bar(x, y, align="center", color="c", tick_label=x_label, hatch="/")plt.xlabel("x")
plt.ylabel("y")
plt.show()

在这里插入图片描述

2.2 barh——条形图

import matplotlib as mpl
import matplotlib.pyplot as plt
from plotly.figure_factory import npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex = [i for i in range(0, 10, 1)]
y = np.random.randint(1, 20, size=10)x_label = [chr(i) for i in range(97, 97+10, 1)]
plt.barh(x, y, align="center", color="c", tick_label=x_label, hatch="/")plt.xlabel("x")
plt.ylabel("y")
plt.show()

在这里插入图片描述

2.3 hist——直方图

直方图是用来展现连续型数据分布特征的统计图形,利用直方图可直观地分析出数据的集中趋势和波动情况。
函数:plt.hist(x)
参数:

  • x: 连续型数据输入值
  • bins: 用于确定柱体的个数或是柱体边缘范围
  • color: 柱体的颜色
  • histtype: 柱体类型
  • label: 图例内容
  • rwidth: 柱体宽度
import matplotlib as mpl
import matplotlib.pyplot as plt
from plotly.figure_factory import npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex = np.random.randint(0, 10, 100)
y = range(0, 6, 1)plt.hist(x, bins=y, color='c', histtype="bar", rwidth=1, alpha=0.6)plt.xlabel("x")
plt.ylabel("y")
plt.show()

在这里插入图片描述
除最后一个柱体的数据范围是闭区间,其它柱体的数据范围都是左闭右开区间。
总结,柱状图与直方图的区别:
直方图描述的是连续型数据的分布,柱状图描述的是离散型数据分布;柱状图的柱体之间有空隙,直方图的柱体之间无空隙。

堆积直方图

import matplotlib as mpl
import matplotlib.pyplot as plt
from plotly.figure_factory import npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex1 = np.random.randint(0, 10, 100)
x2 = np.random.randint(0, 10, 100)
y = range(0, 10, 1)plt.hist([x1, x2], bins=y, color=['c', 'y'], histtype="bar", rwidth=1, stacked=True, alpha=0.6)plt.xlabel("x")
plt.ylabel("y")
plt.show()

在这里插入图片描述

阶梯型直方图

将hist()的histtype改为stepfilled即可绘制阶梯型直方图

import matplotlib as mpl
import matplotlib.pyplot as plt
from plotly.figure_factory import npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex1 = np.random.randint(0, 10, 100)
x2 = np.random.randint(0, 10, 100)
y = range(0, 10, 1)
labels = ['a', 'b']
plt.hist([x1, x2], bins=y, color=['c', 'y'], histtype="stepfilled", rwidth=1, stacked=True, label=labels)plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.show()

在这里插入图片描述

2.4 pie——饼图

绘制不同类型数据的百分比,通过饼图可以清楚地观察数据的占比情况。
函数:plt.pie(soldNums, explode=explode, labels=kinds, autopct=“%3.1f%%”, startangle=45, shadow=True, colors=colors)
参数:

  • soldNums: 相当于x,并不是参数名称,要绘制的百分比列表
  • explode:饼片边缘偏离半径的百分比
  • labels: 标记每份饼片的文本标签内容
  • autopct: 饼片文本标签内容对应的数值百分比样式
  • startangle: 从x轴作为起始位置,第一个饼片逆时针旋转的角度
  • shadow: 是否绘制饼片的阴影
  • colors: 饼片的颜色
  • 其它参数,pctdistance: 百分比数值的显示位置,以半径长度比例值作为显示位置依据
  • 其它参数,labeldistance: 标签值的显示位置,以半径长度比例值作为显示位置依据

示例1

import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsekinds = "a", "b", "c", "d"
soldNums = [0.3, 0.2, 0.4, 0.1]
colors = ['g', 'r', 'b', 'black']
plt.pie(soldNums, labels=kinds, autopct="%3.2f%%", startangle=60, colors=colors)plt.title("不同类型占比")
plt.show()

在这里插入图片描述

示例2

import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsekinds = "a", "b", "c", "d"
soldNums = [0.3, 0.2, 0.4, 0.1]
colors = ['g', 'r', 'b', 'black']
explode = (0.1, 0.1, 0.1, 0.1)
plt.pie(soldNums, explode=explode, labels=kinds, autopct="%3.1f%%", startangle=45, shadow=True, colors=colors)plt.title("不同类型占比")
plt.show()

在这里插入图片描述

内嵌环饼形图

将饼图嵌套,可观察多组数据的比例分布

import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsekinds = ["a", "b", "c", "d"]
weight1 = [0.3, 0.2, 0.4, 0.1]
weight2 = [0.2, 0.25, 0.35, 0.2]
colors = ['g', 'r', 'b', 'black']
outer_colors = colors
inner_colors = colors
wedges1, texts1, autotexts1 = plt.pie(weight1, autopct="%3.1f%%", radius=1, pctdistance=0.85, colors=outer_colors, textprops=dict(color="w"),wedgeprops=dict(width=0.3, edgecolor="w"))
wedges2, texts2, autotexts2 = plt.pie(weight2, autopct="%3.1f%%", radius=0.65, pctdistance=0.7, colors=inner_colors, textprops=dict(color="w"),wedgeprops=dict(width=0.3, edgecolor="w"))
plt.legend(wedges1, kinds, fontsize=12, title="比例", loc="best", bbox_to_anchor=(0.6, 0, 0.4, 1))
plt.setp(autotexts1, size=12, weight="bold")
plt.setp(autotexts2, size=12, weight="bold")
plt.setp(texts1, size=12)
plt.title("不同类型占比")
plt.show()

在这里插入图片描述

2.5 polar——极线图

在极坐标轴上绘制折线图
函数:plt.plot(theta, r)
参数:

  • theta: 每个标记所在射线与极径的夹角。
  • r: 每个标记到原点的距离。
import matplotlib.pyplot as plt
import numpy as npbarSlices = 12theta = np.linspace(0, 2*np.pi, barSlices, endpoint=False)
r = 30*np.random.rand(barSlices)
plt.polar(theta, r, color="chartreuse", linewidth=2, marker="*", mfc="b", ms=10)
plt.show()

在这里插入图片描述

2.6 scatter——气泡图

二维数据借助气泡大小展示三维数据
函数:plt.scatter(x, y)
参数:

  • x: x轴上的数值。
  • y: y轴上的数值。
  • c: 散点标记的颜色。
  • cmap: 将浮点数映射成颜色的颜色映射表。
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as npa = np.random.randn(50)
b = np.random.randn(50)plt.scatter(a, b, s=np.power(10*a+20*b, 2), c=np.random.rand(50), cmap=mpl.cm.RdYlBu, marker="o")
plt.show()

在这里插入图片描述

2.7 stem——棉棒图

绘制离散有序数据
函数: plt.stem(x, y)
参数:

  • x: 指定棉棒的x轴基线上的位置
  • y: 绘制棉棒的长度
  • linefmt: 棉棒的样式
  • markerfmt : 棉棒末端的样式
  • basefmt: 指定基线的样式
import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0.5, 2*np.pi, 20)
y = np.random.randn(20)plt.stem(x, y, linefmt="-.", markerfmt="o", basefmt="-")
plt.show()

在这里插入图片描述

2.8 boxplot——箱线图

箱线图是由一个箱体和一对箱须所组成的统计图形。箱体是由第一四分位数、中位数(第二四分位数)和第三分位数所组成的。在箱须的末端之外的数值可以理解为离群值。箱须是对一组数据范围的大致直观描述。

示例1

  • x: 绘制箱线图的输入数据
import matplotlib.pyplot as plt
import numpy as npx = np.random.randn(100)plt.boxplot(x)plt.xticks([1], ["x"])
plt.ylabel("y")plt.grid(axis="y", ls=":", lw=1, color="black", alpha=0.5)
plt.show()

在这里插入图片描述

示例2

函数:bplot = plt.boxplot(testList, whis=whis, widths=width, sym=“o”, labels=labels, patch_artist=True)
参数:

  • testList: 绘制箱线图的输入数据
  • whis: 四分位间距的倍数,用来确定箱须包含数据的范围大小
  • widths: 设置箱体的宽度
  • sym: 离群值的标记样式
  • labels: 每一个数据集的刻度标签
  • patch_artist: 是否给箱体添加颜色
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"]=False	# 显示负数testA = np.random.randn(1000)
testB = np.random.randn(1000)testList = [testA, testB]
labels = ["A", "B"]
colors = ["y", "g"]whis = 1.6
width = 0.35bplot = plt.boxplot(testList, whis=whis, widths=width, sym="o", labels=labels, patch_artist=True)
for patch, color in zip(bplot["boxes"], colors):patch.set_facecolor(color)plt.ylabel("随机数值")
plt.grid(axis="y", ls=":", lw=1, color="gray", alpha=0.4)
plt.show()

在这里插入图片描述

2.9 errorbar——误差棒图

绘制y轴方向或是x轴方向的误差范围
函数:

  • x: 数据点的水平位置
  • y: 数据点的垂直位置
  • yerr: y轴方向的数据点的误差计算方法
  • xerr: x轴方向的数据点的误差计算方法
import matplotlib.pyplot as plt
import numpy as npx = np.linspace(0.1, 1, 10)
y = np.exp(x)plt.errorbar(x, y, fmt="bo:", yerr=0.2, xerr=0.05)plt.xlim(0, 1.1)
plt.show()

在这里插入图片描述

3 常用统计图

3.1 堆积柱状图

令函数bar中的参数bottom=y可输出堆积柱状图

import matplotlib as mpl
import matplotlib.pyplot as pltmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex = [i for i in range(5)]
y = [i for i in range(5)]
y1 = [1 for i in range(5)]plt.bar(x, y, align="center", color="c", tick_label=["a", "b", "c", "d", "e"], label='y')
plt.bar(x, y1, align="center", bottom=y, color="g", tick_label=["a", "b", "c", "d", "e"], label='y1')plt.xlabel("x")
plt.ylabel("y")
plt.legend()plt.show()

在这里插入图片描述

3.2 堆积条形图

令函数bar中的参数left=y可输出堆积柱状图

import matplotlib as mpl
import matplotlib.pyplot as pltmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex = [i for i in range(5)]
y = [i for i in range(5)]
y1 = [1 for i in range(5)]plt.barh(x, y, align="center", color="c", tick_label=["a", "b", "c", "d", "e"], label='y')
plt.barh(x, y1, align="center", left=y, color="g", tick_label=["a", "b", "c", "d", "e"], label='y1')plt.xlabel("x")
plt.ylabel("y")
plt.legend()plt.show()

在这里插入图片描述

3.3 并列柱状图

并列柱状图的只是单个柱状图的叠加而已,仅需注意叠加的柱状图的x的起始位置。

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex = np.arange(5)
y = [i for i in range(5)]
y1 = [1 for i in range(5)]bar_width = 0.35
tick_label = ["a", "b", "c", "d", "e"]plt.bar(x, y, bar_width, align="center", color="c",  label='y', alpha=0.5)
plt.bar(x+bar_width, y1, bar_width, align="center", color="g", label='y1', alpha=0.5)plt.xlabel("x")
plt.ylabel("y")
plt.legend()plt.show()

在这里插入图片描述

3.4 并列条形图

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as npmpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = Falsex = np.arange(5)
y = [i for i in range(5)]
y1 = [1 for i in range(5)]bar_width = 0.35
tick_label = ["a", "b", "c", "d", "e"]plt.barh(x, y, bar_width, align="center", color="c",  label='y', alpha=0.5)
plt.barh(x+bar_width, y1, bar_width, align="center", color="g", label='y1', alpha=0.5)plt.xlabel("x")
plt.ylabel("y")
plt.legend()plt.show()

在这里插入图片描述

3.5 堆积折线图

堆积折线图是通过绘制不同数据集的折线图而产生的。堆积折线图是按照垂直方向上彼此堆叠且又不相互覆盖的排列顺序,绘制若干条折线图而形成的组合图形。

import matplotlib.pyplot as plt
import numpy as npx = np.arange(1, 5, 1)
y = [i for i in range(4)]
y1 = [1 for i in range(4)]
y2 = [2, 3, 1, 4]labels = ['y', 'y1', 'y2']
colors = ['b', 'g', 'c', 'yellow']plt.stackplot(x, y, y1, y2, labels=labels, colors=colors)
plt.legend(loc="best")plt.show()

在这里插入图片描述

3.6 间断条形图

间断条形图是在条形图的基础上绘制而成的,主要用来可视化定向数据的相同指标在时间维度上的指标值的变化情况,实现定性数据的相同指标的变化情况的有效直观比较。
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as npmpl.rcParams["font.sans-serif"]=["SimHei"]
mpl.rcParams["axes.unicode_minus"]=Falseplt.broken_barh([(10, 15), (35, 20), (60, 5)], (12, 8), facecolors="yellow")
plt.broken_barh([(5, 10), (20, 2), (28, 6), (40, 3)], (2, 8), facecolors=("r", 'b', 'g', 'c'))plt.xlim(0, 70)
plt.ylim(0, 20)
plt.xlabel("播放时间")plt.xticks(np.arange(0, 70, 10))
plt.yticks([16, 6], ["公益性广告", "食品类广告"])
plt.grid(ls=":", lw=1, color="gray")
plt.title("不同广告的播放时长")plt.show()

在这里插入图片描述
(10, 15)表示从起点是x轴的数值为10的位置起,沿x轴正方向移动15个单位。
(12, 8)表示从起点是y轴的数值为10的位置起,沿y轴正方向移动8个单位,即柱体的高度和垂直起始位置。

3.7 阶梯图

阶梯图常用中时间序列数据的可视化任务中,表示时序数据的波动周期和规律

import matplotlib.pyplot as plt
import numpy as npx = np.linspace(1, 7, 7)
y = np.sin(x)plt.step(x, y, color="r", where="pre", lw=2)
plt.xlim(0, 8)
plt.xticks(np.arange(1,7,1))
plt.ylim(-1.1, 1.1)plt.show()

在这里插入图片描述

where的取值"pre”, 表示x轴上的每个数据点对应的y轴上的数值向左侧绘制水平线直x轴上的此数据点的左侧相邻数据点为止,取值是按照左开右闭区间进行数据点选取的。除“pre”外也可取值"post", 表示在x轴上的相邻数据点的取值是按照左闭右开区间进行数据点选取的。


http://www.ppmy.cn/news/1394682.html

相关文章

Uibot6.0 (RPA财务机器人师资培训第2天 )采购付款——网银付款机器人案例实战

训练网站:泓江科技 (lessonplan.cn)https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981(本博客中会有部分课程ppt截屏,如有侵权请及请及时与小北我取得联系~&#xff0…

贪心算法的魅力与应用

在算法的世界里,贪心算法(Greedy Algorithm)以其简洁而高效的策略吸引着我们的目光。本文将深入探讨贪心算法的原理、特点以及它在实际问题中的广泛应用。 一、什么是贪心算法? 贪心算法是一种在每一步选择中都采取当前看起来最优…

最大公因数和最小公倍数

题目&#xff1a;P1029 [NOIP2001 普及组] 最大公约数和最小公倍数问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码&#xff1a; #include<bits/stdc.h> #define int long long using namespace std; int x,y,ans,flag; int gcd(int x,int y){return y0?x:gc…

企业计算机服务器中了locked勒索病毒怎么处理?Locked勒索病毒解密流程

在网络技术不断发展应用过程中&#xff0c;越来越多的企业利用网络开展各项工作业务&#xff0c;网络为企业的生产运营提供了极大便利&#xff0c;但网络威胁手段也在不断增加&#xff0c;为企业的数据安全带来严重威胁。近日&#xff0c;新一波的网络勒索病毒比较猖獗&#xf…

2025汤家凤考研数学视频,基础网课百度网盘课程+PDF讲义资料

2025汤家凤大神及数学全程 docs.qq.com/doc/DTmtOa0Fzc0V3WElI 复制粘贴到浏览器&#xff0c;可以见所有的Ke 第一轮 夯实基础 1.阅读大纲考查要求&#xff0c;明确每章的学习目标&#xff1b; 2.按节学习数学理论基础知识&#xff0c;吃透书中例题&#xff1b; 3.学习每章…

【JavaEE初阶系列】——阻塞队列

目录 &#x1f6a9;阻塞队列的定义 &#x1f6a9;生产者消费者模型 &#x1f388;解耦性 &#x1f388;削峰填谷 &#x1f6a9;阻塞队列的实现 &#x1f4dd;基础的环形队列 &#x1f4dd;阻塞队列的形成 &#x1f4dd; 内存可见性 &#x1f4dd;阻塞队列代码 &#…

nodejs+vue高校心理健康评测与服务系统python-flask-django-php

随着社会的发展&#xff0c;系统的管理形势越来越严峻。越来越多的用户利用互联网获得信息&#xff0c;但各种信息鱼龙混杂&#xff0c;信息真假难以辨别。为了方便用户更好的获得高校心理健康评测与服务&#xff0c;因此&#xff0c;设计一种安全高效的高校心理健康评测与服务…

Python 潮流周刊#43:在开源与家庭之间,他选择了家庭

△△请给“Python猫”加星标 &#xff0c;以免错过文章推送 你好&#xff0c;我是猫哥。这里每周分享优质的 Python、AI 及通用技术内容&#xff0c;大部分为英文。本周刊开源&#xff0c;欢迎投稿[1]。另有电报频道[2]作为副刊&#xff0c;补充发布更加丰富的资讯&#xff0c;…