代码随想录算法训练营第day40|343. 整数拆分 、 96.不同的二叉搜索树

news/2025/2/22 16:23:49/

a.343. 整数拆分

题目链接

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示:

  • 2 <= n <= 58

思路:动态规划五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

2.确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),继续拆分

即拆成两个数和拆成两个数以上

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

3.dp的初始化

不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值,而且题目范围2 <= n <= 58。这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

4.确定遍历顺序

确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

所以遍历顺序为:

for (int i = 3; i <= n ; i++) {for (int j = 1; j < i - 1; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

for (int i = 3; i <= n ; i++) {for (int j = 1; j <= i / 2; j++) {dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));}
}

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

至于 “拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的” 这个我就不去做数学证明了,感兴趣的同学,可以自己证明。

5.举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:

343.整数拆分

class Solution {
public:int integerBreak(int n) {vector<int>dp(n+1);dp[2]=1;for(int i=3;i<=n;i++){for(int j=1;j<=i/2;j++){dp[i]=max(dp[i],max(j*(i-j),j*dp[i-j]));}}return dp[n];}
};

b.96.不同的二叉搜索树 

题目链接

给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。

示例 1:

输入:n = 3
输出:5

示例 2:

输入:n = 1
输出:1

提示:

  • 1 <= n <= 19

先举几个例子,画画图,看看有没有什么规律,如图:

96.不同的二叉搜索树

n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

96.不同的二叉搜索树1

        忽略节点具体数值,可以看到 以1为头节点时,右子树有两个节点,这两个节点的布局和n=2时节点布局一致!

        当以3为头节点时其左子数有两个节点,该俩节点布局也和n=2时布局一致

        当2为头节点时左右子树只有一个节点,布局和n=1时节点类似;

因此有:

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

96.不同的二叉搜索树2

此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。

1.确定dp数组(dp table)以及下标的含义

        dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]

也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] 

2.确定递推公式

        在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] ,j相当于是头结点的元素,从1遍历到i为止。

        所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

3.dp数组如何初始化

        初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

        从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

4.定遍历顺序

        首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

        那么遍历i里面每一个数作为头结点的状态,用j来遍历。、

5.举例推导dp数组

n为5时候的dp数组状态如图:

96.不同的二叉搜索树3

class Solution {
public:int numTrees(int n) {vector<int>dp(n+1);dp[0]=1;for(int i=1;i<=n;i++){for(int j=1;j<=i;j++){dp[i]+=dp[j-1]*dp[i-j];}}return dp[n];}
};

参考:代码随想录 (programmercarl.com)


http://www.ppmy.cn/news/1375880.html

相关文章

【MySQL】 隔离级别和锁机制

事务的四种特性 事务具有四个特征&#xff1a;原子性&#xff08; Atomicity &#xff09;、一致性&#xff08; Consistency &#xff09;、隔离性&#xff08; Isolation &#xff09;和持续性&#xff08; Durability &#xff09;。这四个特性简称为 ACID 特性。 原子性。…

javaWebssh文玩竞价管理系统myeclipse开发mysql数据库MVC模式java编程计算机网页设计

一、源码特点 java ssh文玩竞价管理系统是一套完善的web设计系统&#xff08;系统采用ssh框架进行设计开发&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0…

C++从零开始的打怪升级之路(day45)

这是关于一个普通双非本科大一学生的C的学习记录贴 在此前&#xff0c;我学了一点点C语言还有简单的数据结构&#xff0c;如果有小伙伴想和我一起学习的&#xff0c;可以私信我交流分享学习资料 那么开启正题 今天分享的是关于二叉树的题目 1.根据二叉树创建字符串 606. 根…

react hook: useimperativeHandle

通过 useImperativeHandle&#xff0c;子组件可以选择性地暴露给父组件某些属性或方法&#xff0c;而不是将所有属性和方法暴露出去。 父组件 获得自组件的 ref&#xff0c;就能通过该 ref 来调用 focus来聚焦等功能 在 forwardRef 包装的组件中&#xff0c;ref 固定地是第二个…

微服务:Docker篇

1. 初识Docker 1.1. 什么是Docker 微服务虽然具备各种各样的优势&#xff0c;但服务的拆分通用给部署带来了很大的麻烦。 分布式系统中&#xff0c;依赖的组件非常多&#xff0c;不同组件之间部署时往往会产生一些冲突。 在数百上千台服务中重复部署&#xff0c;环境不一定一…

手撕BeamSearch代码

一、目录 手撕beam searchtransformer generate() 解读 二、实现 手撕beam search def pred(input):batch,seq_leninput.shapegeneratetorch.randn(size(batch,1,10))return generatedef beam_search(input_ids,max_length,num_beams):batchinput_ids.shape[0]#输入扩展exp…

IP传输方式——组播

组播作为IP传输三种方式之一&#xff0c;指的是报文从一个源发出&#xff0c;被转发到一组特定的接收者&#xff0c;相同的报文在每条链路上最多有一份。相较于传统的单播和广播&#xff0c;组播可以有效地节约网络带宽、降低网络负载&#xff0c;所以被广泛应用于IPTV、实时数…

华清远见作业第四十五天——FreeRTOS(第三天)

总结任务的调度算法&#xff0c;把实现代码再写一下 抢占式调度 简单来说就是谁的优先级高就先执行谁 //首先定义出任务相关信息 osThreadId-t myTask03Handle; const osThreadAttr-t myTask03-attributes{.name"myTask03",.stack-size128*4,.priority(osPriority…