yolov9 瑞芯微芯片rknn部署、地平线芯片Horizon部署、TensorRT部署

news/2025/3/17 21:16:12/

  特别说明:参考官方开源的yolov9代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

  模型和完整仿真测试代码,放在github上参考链接 模型和代码。

  之前写过yolov8检测、分割、关键点模型的部署的多篇博文,yolov8还没玩溜,这不yolov9又来了。yolov9刚出来两三天,有朋友就问:yolov9都出来好几天了,怎么没有见到你写一篇部署博客呢。其实yolov9出来两三天,说实话还是通过朋友告知才知道的。一直想抽时间把yolov9部署给盘一下,奈何一拖就又是好几天,这两天抽时间终于把这个yolov9给盘完了。

1 模型和训练

  训练代码参考官方开源的yolov9训练代码,考虑到有些板端对SiLU的支持有限,本示例训练前把激活函数SiLU替换成了ReLU,训练使用的模型配置文件是yolov9.yaml,输入分辨率640x640。用 from thop import profile 统计的模型计算量和参数 Flops: 120081612800.0(120G),Params: 55388336.0(55M)

2 导出 yolov9 onnx

  导出onnx时需要修改两个地方。

  特别说明:只在导出onnx时修改,训练时无需修改,修改以下代码后运行会报错,但是可以生成onnx文件,无需关注报错。

   第一个处:增加以下代码(红色框内新增):
在这里插入图片描述

        reslut = []for i in range(self.nl):reslut.append(self.cv2[i](x[i]))reslut.append(self.cv3[i](x[i]))return reslut

第二处修改:增加以下代码(红色框内新增)
在这里插入图片描述

class CBFuse(nn.Module):def __init__(self, idx):super(CBFuse, self).__init__()self.idx = idxdef forward(self, xs):target_size = xs[-1].shape[2:]if target_size[0] < 10:res = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]out = torch.sum(torch.stack(res + xs[-1:]), dim=0)return outj = 0for i, x in enumerate(xs[:-1]):j = iif target_size[0] < 10:continueif i == 0:x0 = F.interpolate(x[self.idx[i]], size=target_size, mode='nearest')if i == 1:x1 = F.interpolate(x[self.idx[i]], size=target_size, mode='nearest')if i == 2:x2 = F.interpolate(x[self.idx[i]], size=target_size, mode='nearest')if j == 2 and target_size[0] > 10:out = x0 + x1 + x2 + xs[-1:][0]return outif j == 1 and target_size[0] > 10:out = x0 + x1 + xs[-1:][0]return outif j == 0 and target_size[0] > 10:out = x0 + xs[-1:][0]return outres = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]out = torch.sum(torch.stack(res + xs[-1:]), dim=0)return out

最后:增加保存onnx文件代码
在这里插入图片描述

    print(torch.onnx.ir_version)print("===========  onnx =========== ")dummy_input0 = torch.randn(1, 3, 640, 640)input_names = ["data"]output_names = ["output1", "output2", "output3", "output4", "output5", "output6"]torch.onnx.export(model, (dummy_input0), "./test_onnx/yolov9_relu_80class.onnx", verbose=True, input_names=input_names, output_names=output_names, opset_version=12)print("======================== convert onnx Finished! .... ")

3 yolov9 测试效果

pytorhc测试效果
在这里插入图片描述

onnx测试效果(确保修改CBFuse后导出的onnx测试结果和pytorch是一致的)
在这里插入图片描述

4 tensorRT 时耗

  模型训练使用的配置文件是yolov9.yaml,输入分辨率是640x640,转trt使用的fp16_mode,显卡Tesla V100,cuda_11.0。
在这里插入图片描述

5 rknn 板端C++部署

  模型训练使用的配置文件是yolov9.yaml,输入分辨率是640x640,芯片rk3588.

  把在rk3588板子上测试的模特推理时耗,和用C++代码写的后处理时耗,都给贴出来供大家参考。【rk3588的C++代码参考链接】。
在这里插入图片描述


http://www.ppmy.cn/news/1367998.html

相关文章

selenium测试工具用来模拟用户浏览器的操作

执行JS的类库&#xff1a;execjs&#xff0c;PyV8&#xff0c;selenium&#xff0c;node pip list pip install selenium pip install xlrd pip install xlwt pip install PyExecJS pip install xlutils selenium测试工具可以用来模拟用户浏览器的操作&#xff0c;其支持的浏览…

安防视频监控EasyCVR平台使用GB28181协议接入时,如何正确配置端口?

国标GB28181协议EasyCVR安防视频监控平台可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;平台支持7*24小时实时高清视频监控&#xff0c;能同时播放多路监控视频流…

win11安装nodejs

一、下载安装包 链接: https://pan.baidu.com/s/1_df8s1UlgNNaewWrWgI59A?pwdpsjm 提取码: psjm 二、安装步骤 1.双击安装包 2.Next> 3.勾选之后&#xff0c;Next> 4.点击Change&#xff0c;选择你要安装的路径&#xff0c;然后Next> 5.点击Install安装 二、…

RuoYi-Vue-Plus功能分析-jackson配置

文章目录 前言一、配置文件二、配置类三、注解四、json工具类1. 工具内容2. 使用工具 前言 前端在给我发送请求的时候一般包含三个部分url&#xff0c;header&#xff0c;body。那么就会涉及我们后端如何接收这些请求参数并且我们处理完毕参数后前端又如何接收参数 通过url传…

基于SpringBoot的企业头条管理系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

CMS垃圾回收器

CMS垃圾回收 CMS GC的官方名称为“Mostly Concurrenct Mark and Sweep Garbage Collector”&#xff08;最大-并发-标记-清除-垃圾收集器&#xff09;。 作用范围&#xff1a; 老年代 算法&#xff1a; 并发标记清除算法。 启用参数&#xff1a;-XX:UseConMarkSweepGC 默认回收…

Flutter 的状态管理

状态提升&#xff08;Lifting-state-up&#xff09; 把子组件的状态&#xff0c;提升到上级组件中&#xff0c;从而实现在多个组件之间共享和同步数据的效果 以 flutter counter demo&#xff0c;那个按按钮1 的来说&#xff0c;现在的 count 是几&#xff0c;不是存在页面显…

【JVM】JVM相关机制

1. JVM内存区域划分 1.1 内存区域划分简介 内存区域划分&#xff1a;实际上JVM也是一个进程&#xff0c;进程运行时需要向操作系统申请一些系统资源&#xff08;内存就是典型的资源&#xff09;&#xff0c;这些内存空间就支撑着后续Java程序的运行&#xff0c;而这些内存又会…