【医学影像】LIDC-IDRI数据集的无痛制作

news/2024/12/15 0:53:05/

LIDC-IDRI数据集制作

    • 0.下载
      • 0.0 链接汇总
      • 0.1 步骤
    • 1.合成CT图
    • reference

0.下载

0.0 链接汇总

  • LIDC-IDRI官方网址:https://www.cancerimagingarchive.net/nbia-search/?CollectionCriteria=LIDC-IDRI
  • NBIA Data Retriever 下载链接:https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images

0.1 步骤

  1. 检索
    分成两种,Simple Search一个是多种关键字筛选,鉴定为没用。
    在这里插入图片描述
    直接用Text Search ,将annotation的ID输上,点击search
    在这里插入图片描述
  2. 加入Cart
    检索出来会有好几种模态/任务的数据,选择自己需要点击购物车加入Cart。
    例如:我是做CT分割,故只选择模态为CT的那个数据。
    在这里插入图片描述
    重复Text检索步骤,得到最终自己需要的所有Cart:
    在这里插入图片描述
  3. 下载
  • 安装好NBIA Data Retriever
    前面链接下载,或者Download->Get NBIA Data Retriever 下载,有官方指引。
    在这里插入图片描述

  • 生成manifest文件
    在这里插入图片描述

  • 下载

设置好路径,点击start
在这里插入图片描述

1.合成CT图

这边是直接偷了NaviAirwayi的代码进行dicom文件merge成nii文件。
文件结构需要为:
在这里插入图片描述

如果按照之前步骤进行下载的话,获得的文件就是上述结构。只是子文件名称会因为太长而被修改,不过不影响结果,最终生成文件名是按照一级目录命名。
在这里插入图片描述

预处理代码完整如下:

import numpy as np
import os
import SimpleITK as sitk
from PIL import Image
import pydicom
import cv2
import nibabel as nib
import pydicom## funtion
#####-----------------------------------------------------------------------def loadFile(filename):ds = sitk.ReadImage(filename)#pydicom.dcmread(filename)img_array = sitk.GetArrayFromImage(ds)frame_num, width, height = img_array.shape#print("frame_num, width, height: "+str((frame_num, width, height)))return img_array, frame_num, width, height'''
def loadFileInformation(filename):information = {}ds = pydicom.read_file(filename)information['PatientID'] = ds.PatientIDinformation['PatientName'] = ds.PatientNameinformation['PatientSex'] = ds.PatientSexinformation['StudyID'] = ds.StudyIDinformation['StudyDate'] = ds.StudyDateinformation['StudyTime'] = ds.StudyTimeinformation['Manufacturer'] = ds.Manufacturerreturn information
'''def get_3d_img_for_one_case(img_path_list, img_format="dcm"):img_3d=[]for idx, img_path in enumerate(img_path_list):print("progress: "+str(idx/len(img_path_list))+"; "+str(img_path), end="\r")img_slice, frame_num, _, _ = loadFile(img_path)assert frame_num==1img_3d.append(img_slice)img_3d=np.array(img_3d)return img_3d.reshape(img_3d.shape[0], img_3d.shape[2], img_3d.shape[3])
#####-----------------------------------------------------------------------# the path to LIDC-IDRI raw imagesLIDC_IDRI_raw_path = "G:\BAS_test_raw\manifest-1708937949454\LIDC-IDRI"LIDC_IDRI_raw_img_dict = {}
img_names = os.listdir(LIDC_IDRI_raw_path)
img_names.sort()
img_namespath_to_a_case = ""def find_imgs(input_path):global path_to_a_caseitems = os.listdir(input_path)items.sort()# print("There are "+str(items)+" in "+str(input_path))All_file_flag = Truefor item in items:if os.path.isdir(input_path + "/" + item):All_file_flag = Falsebreakif All_file_flag and len(items) > 10:# print("we get "+str(input_path))path_to_a_case = input_pathelse:for item in items:if os.path.isdir(input_path + "/" + item):# print("open filefloder: "+str(input_path+"/"+item))find_imgs(input_path + "/" + item)for idx, img_name in enumerate(img_names):print(idx / len(img_names), end="\r")find_imgs(LIDC_IDRI_raw_path + "/" + img_name)slice_names = os.listdir(path_to_a_case)slice_names.sort()LIDC_IDRI_raw_img_dict[img_name] = []for slice_name in slice_names:if slice_name.split(".")[1] == "dcm":LIDC_IDRI_raw_img_dict[img_name].append(path_to_a_case + "/" + slice_name)print("Show the case names: "+str(LIDC_IDRI_raw_img_dict.keys()))# set output pathoutput_image_path = r"G:\myBAS\test\images"
if not os.path.exists(output_image_path):os.mkdir(output_image_path)for case in LIDC_IDRI_raw_img_dict.keys():img_3d = get_3d_img_for_one_case(LIDC_IDRI_raw_img_dict[case])sitk.WriteImage(sitk.GetImageFromArray(img_3d),output_image_path + "/" + case + ".nii.gz")

今天折腾了半死,希望对大家有帮助。

reference

refer1


http://www.ppmy.cn/news/1364667.html

相关文章

Idea安装gideabrowser插件

Idea安装gideabrowser插件 一、安装二、设置教程 一、安装 gideabrowser链接地址 二、设置教程 在人生的舞台上,奋力拼搏,才能演绎出最精彩的人生之歌。面对挑战和困难,不妥协、不气馁,只争朝夕,方显坚韧与智慧。努…

Python 实现Excel自动化办公(中)

在上一篇文章的基础上进行一些特殊的处理,这里的特殊处理主要是涉及到了日期格式数据的处理(上一篇文章大家估计也看到了日期数据的处理是不对的)以及常用的聚合数据统计处理,可以有效的实现你的常用统计要求。代码如下&#xff1…

拉美巴西阿根廷媒体宣发稿墨西哥哥伦比亚新闻营销如何助推跨境出海推广?

【本篇由言同数字科技有限公司原创】拉美地区是一个巨大的市场,其中包括了许多国家,如巴西、阿根廷、智利、哥伦比亚等。这些国家的消费者对品牌的认知度和忠诚度不同,而且市场环境也存在着很大的差异。因此,品牌需要通过跨境海外…

3d 舞蹈同步

目录 看起来很强大 unity驱动bvh跳舞: 脚飘动问题: bvh和播放关节对应关系 zxy格式 bvh和播放关节对应关系 zyx的对应关系: bvh播放器: 看起来很强大 GitHub - FORTH-ModelBasedTracker/MocapNET: We present MocapNET, a …

再见,Visual Basic——曾经风靡一时的编程语言

2020年3月,微软团队宣布了对Visual Basic(VB)的“终审判决”:不再进行开发或增加新功能。这意味着曾经风光无限的VB正式退出了历史舞台。 VB是微软推出的首款可视化编程软件,自1991年问世以来,便受到了广大…

小白水平理解面试经典题目LeetCode 655. Print Binary Tree【Tree】

655 打印二叉树 一、小白翻译 给定二叉树的 root ,构造一个 0 索引的 m x n 字符串矩阵 res 来表示树的格式化布局。格式化布局矩阵应使用以下规则构建: 树的高度为 height ,行数 m 应等于 height 1 。 列数 n 应等于​​xheight1​​ - …

AI大模型-流式处理 (以百度接口为例)

No bb , show code 效果 后端代码 from flask import Flask, request, Response import json import requests from flask_cors import CORSapp Flask(__name__) CORS(app) # Enable CORS for all routesdef get_access_token(ak, sk):auth_url "https://aip.baidubce…

Python文件和异常(一)

目录 一、从文件中读取数据 (一)读取整个文件 (二)文件路径 (三)逐行读取 (四)创建一个包含文件各行内容的列表 (五)使用文件的内容 (六&a…