Go slice的底层实现原理?

news/2025/2/12 8:04:55/

切片是基于数组实现的,它的底层是数组,可以理解为对 底层数组的抽象。

源码包中src/runtime/slice.go 定义了slice的数据结构:

type slice struct {array unsafe.Pointerlen   intcap   int
}

slice占用24个字节

array: 指向底层数组的指针,占用8个字节

len: 切片的长度,占用8个字节

cap: 切片的容量,cap 总是大于等于 len 的,占用8个字节

slice有4种初始化方式

// 初始化方式1:直接声明
var slice1 []int// 初始化方式2:使用字面量
slice2 := []int{1, 2, 3, 4}// 初始化方式3:使用make创建slice
slice3 := make([]int, 3, 5)         // 初始化方式4: 从切片或数组“截取”
slcie4 := arr[1:3]

通过一个简单程序,看下slice初始化调用的底层函数

package mainimport "fmt"func main() {slice := make([]int, 0)slice = append(slice, 1)fmt.Println(slice, len(slice), cap(slice))
}

通过 go tool compile -S test.go | grep CALL 得到汇编代码

0x0042 00066 (test.go:6)        CALL    runtime.makeslice(SB)
0x006d 00109 (test.go:7)        CALL    runtime.growslice(SB)
0x00a4 00164 (test.go:8)        CALL    runtime.convTslice(SB)
0x00c0 00192 (test.go:8)        CALL    runtime.convT64(SB)
0x00d8 00216 (test.go:8)        CALL    runtime.convT64(SB)
0x0166 00358 ($GOROOT/src/fmt/print.go:274)     CALL    fmt.Fprintln(SB)
0x0180 00384 (test.go:5)        CALL    runtime.morestack_noctxt(SB)
0x0079 00121 (<autogenerated>:1)        CALL    runtime.efaceeq(SB)
0x00a0 00160 (<autogenerated>:1)        CALL    runtime.morestack_noctxt(SB)

初始化slice调用的是runtime.makeslice,makeslice函数的工作主要就是计算slice所需内存大小,然后调用mallocgc进行内存的分配

所需内存大小 = 切片中元素大小 * 切片的容量

func makeslice(et *_type, len, cap int) unsafe.Pointer {mem, overflow := math.MulUintptr(et.size, uintptr(cap))if overflow || mem > maxAlloc || len < 0 || len > cap {// NOTE: Produce a 'len out of range' error instead of a// 'cap out of range' error when someone does make([]T, bignumber).// 'cap out of range' is true too, but since the cap is only being// supplied implicitly, saying len is clearer.// See golang.org/issue/4085.mem, overflow := math.MulUintptr(et.size, uintptr(len))if overflow || mem > maxAlloc || len < 0 {panicmakeslicelen()}panicmakeslicecap()}return mallocgc(mem, et, true)
}

本文节选于Go合集《Go语言面试题精讲》:GOLANG ROADMAP 一个专注Go语言学习、求职的社区。


http://www.ppmy.cn/news/1361044.html

相关文章

LabVIEW串口通信的激光器模块智能控制

LabVIEW串口通信的激光器模块智能控制 介绍了通过于LabVIEW的VISA串口通信技术在激光器模块控制中的应用。通过研究VISA串口通信的方法和流程&#xff0c;实现了对激光器模块的有效控制&#xff0c;解决了数据发送格式的匹配问题&#xff0c;为激光器模块的智能控制提供了一种…

使用Python制作进度条有多少种方法?看这一篇文章就够了!

前言 偶然间刷到一个视频&#xff0c;说到&#xff1a;当程序正在运算时&#xff0c;会有一个较长时间的空白期&#xff0c;谁也不知道程序运行的进度如何&#xff0c;不如给他加个进度条。 于是我今个就搜寻一下&#xff0c;Python版的进度条都可以怎么写&#xff01; 送书…

gdb调试core文件和调试正在运行中的程序

在使用GDB进行调试时&#xff0c;可以调试core文件或者正在运行中的程序。下面我将详细介绍如何使用GDB进行这两种方式的调试。 调试core文件 获取core文件 当程序由于严重错误&#xff08;如段错误&#xff09;而终止时&#xff0c;操作系统会生成一个core文件&#xff0c;其…

多人协作记账账本小程序开源版开发

多人协作记账账本小程序开源版开发 支持多人协作的记账本小程序&#xff0c;可用于家庭&#xff0c;团队&#xff0c;组织以及个人的日常收支情况记录&#xff0c;支持周月年度统计 便捷记账 便捷的记账方式&#xff0c;支持多种记账类型&#xff0c;快捷切换账本等 多账本 支…

qt-动画圆圈等待-LED数字

qt-动画圆圈等待-LED数字 一、演示效果二、关键程序三、下载链接 一、演示效果 二、关键程序 #include "LedNumber.h" #include <QLabel>LEDNumber::LEDNumber(QWidget *parent) : QWidget(parent) {//设置默认宽高比setScale((float)0.6);//设置默认背景色se…

SpringBoot和SpringCloud的区别,使用微服务的好处和缺点

SpringBoot是一个用于快速开发单个Spring应用程序的框架&#xff0c;通过提供默认配置和约定大于配置的方式&#xff0c;快速搭建基于Spring的应用。让程序员更专注于业务逻辑的编写&#xff0c;不需要过多关注配置细节。可以看成是一种快速搭建房子的工具包&#xff0c;不用从…

【数据结构(顺序表)】

一、什么是数据结构? 数据结构是由“数据”和“结构”两词组合而来。 什么是数据&#xff1f;常见的数值1、2、3、4.....、教务系统里保存的用户信息&#xff08;姓名、性别、年龄、学历等等&#xff09;、网页里肉眼可以看到的信息&#xff08;文字、图片、视频等等&#xff…

IO线程进程作业day6

1> 将标准io文件IO的内容复习一遍 2> 进程线程的相关函数复习一遍 3> 将信号和消息队列的课堂代码敲一遍 1、处理普通信号 #include <myhead.h> //定义信号处理函数 void handler(int signo) {if(signoSIGINT){puts("按下ctrlc");} } int main(in…