【程序设计竞赛】竞赛中的细节优化

news/2024/12/23 4:34:52/

必须强调下,以下的任意一种优化,都应该是在本身采用的算法没有任何问题情况下的“锦上添花”,而不是“雪中送炭”。
如果下面的说法存在误导,请专业大佬评论指正

读写优化

C++读写优化——解除流绑定

在ACM里,经常出现数据集超大造成 cin TLE的情况,其实cin效率之所以低,不是比C低级,而是因为需要与scanf的缓冲区同步,导致效率降低,而且是C++为了兼容C而采取的保守措施。
C++代码中添加 ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);这一段之后,读取速度即可无限趋近于scanfprintf
如果代码首部没有using namespace std; 则要换成std::ios::sync_with_stdio(0),std::cin.tie(0),std::cout.tie(0);

#include <bits/stdc++.h>
using namespace std;int main()
{ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);// 未使用using namespace std;时使用下方写法// std::ios::sync_with_stdio(0),std::cin.tie(0),std::cout.tie(0);// 代码主体读取、操作、打印
}

std::ios::sync_with_stdio(0)

在 C++ 中,取消同步流(std::ios::sync_with_stdio)是一个常用的技巧,用来加快输入/输出流(I/O)的速度。默认情况下,C++ 的标准库(iostream)与 C 的标准库(stdio)之间是同步的,这意味着它们共享缓冲区,并且每次使用其中一个库的 I/O 功能时,都会刷新另一个库的缓冲区。这保证了数据的一致性,但也增加了性能开销。

通过调用 std::ios::sync_with_stdio(0),你可以取消这种同步,这通常会导致 I/O 操作的速度显著提高。但是,一旦取消了同步,就不能再混用 C++ 和 C 的 I/O 函数(如 cin/cout 和 scanf/printf),因为这可能会导致输出顺序不确定或其他问题。

如果已经采用了C++的输入函数cin,就避免再使用C的scanf;同样的如果已经使用 cout 就避免再使用 printf

cin.tie(0)

在默认的情况下cin绑定的是cout,每次执行的时候都要调用flush,这样会增加IO负担。
这行代码解除了 cin(输入流)与 cout(输出流)之间的绑定。默认情况下,cin 与 cout 绑定在一起,这意味着在每次从 cin 读取之前,cout 的缓冲区都会被自动刷新。通过解除绑定,可以进一步提高 I/O 性能,但这也意味着在输出和输入操作之间不再自动刷新 cout 的缓冲区。

cout.tie(0)

这行代码通常不是必须的,因为 cout 默认情况下并不绑定到其他流。它的主要作用是确保 cout 不与任何其他流(例如 cin 或 cerr)绑定。但在大多数情况下,这行代码并不会改变默认行为。

C++换行输出

endl会输出’\n’(\n是转义字符,代表换行),然后立即刷新缓冲区并输出到屏幕上。由于要刷新缓冲区,endl会比\n慢一点,一般不建议使用。以下是endl实现:

template <class _CharT, class _Traits>
inline _LIBCPP_INLINE_VISIBILITY
basic_ostream<_CharT, _Traits>&
endl(basic_ostream<_CharT, _Traits>& __os)
{__os.put(__os.widen('\n'));__os.flush();return __os;
}

C++中换行大多喜欢写 cout << endl;,然而据acmer和本人赛场亲身经历,这种写法比 cout << '\n; 输出速度要慢许多。当然这不乏出题人的原因,不过为了避免悲剧的发生希望大家还是使用如下两种方法。

  1. 在代码头部使用宏定义#define endl '\n' 替换endl
  2. 改掉使用endl的习惯
#include <bits/stdc++.h>
#define endl '\n'int main()
{ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);// 上方使用了宏定义,代码编译预处理阶段就将endl换成了'\n'cout << endl;// 直接输出'\n'cout << '\n';
}

C/C++自定义快读快写

本人没有亲自使用过,不过是看别人代码中有如此运用。据说C++17后getchar()/putchar()已经被负优化了,未知真假,个人选择使用。

inline int read()
{int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;
}inline void write(int x)
{char F[200];int tmp=x>0?x:-x;if(x<0)putchar('-');int cnt=0;while(tmp>0){F[cnt++]=tmp%10+'0';tmp/=10;}while(cnt>0)putchar(F[--cnt]);
}

Java快读快写

大部分初学Java的人应该是使用如下代码进行Java的读写,不过下面这个代码的读写,在面对大量数据的情况下是比较慢的。

import java.util.Scanner;public class Main {public static void main(String[] args) {// java.util 包下的读取Scanner sc = new Scanner(System.in);int n = sc.nextInt();// JavaSystem.out.println(n);sc.close();}
}

下方的读写代码速度较快,经过实践检验,建议采用。该部分代码经过真实调试,应该是不存在什么问题。
特别提醒!!!如果使用了下方代码中的快速输出,代码最后必须使用out.flush(); 必须使用out.flush(); 必须使用out.flush();

快速读入的代码按需使用,写代码时不一定要全部写,如果在XCPC赛场上使用Java,可以提前写好该模板。

import java.io.*;/*** 自定义快读类*/
class Scanner {static StreamTokenizer st = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));// 字符串快速读入对象static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));public int nextInt() {try {st.nextToken();return (int) st.nval;} catch (IOException e) {throw new RuntimeException(e);}}public double nextDouble() {try {st.nextToken();} catch (IOException e) {throw new RuntimeException(e);}return st.nval;}public float nextFloat() {try {st.nextToken();} catch (IOException e) {throw new RuntimeException(e);}return (float) st.nval;}public long nextLong() {try {st.nextToken();} catch (IOException e) {throw new RuntimeException(e);}return (long) st.nval;}public String next() {try {st.nextToken();} catch (IOException e) {throw new RuntimeException(e);}return st.sval;}// 按行读入字符串public String readLine() {String s = null;try {s = br.readLine();} catch (IOException e) {e.printStackTrace();}return s;}
}
public class Main {// 快速输出对象static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));public static void main(String[] args) {// 创建自定义的Scanner类Scanner sc = new Scanner();/*** 快读使用案例*/int n = sc.nextInt();double d = sc.nextDouble();float f = sc.nextFloat();// 读入字符串(以空格、回车结尾)String str = sc.next();// 整行读入字符串(以回车换行结尾)String line = sc.readLine();/*** 快速输出使用案例*/out.println(n);out.println(d);out.println(f);out.println(str);out.println(line);// 快速输出必须要刷新缓冲区,否则无法输出out.flush();}
}

读写样例
在这里插入图片描述

其他玄学优化——自行试用

下方玄学,只是部分传言,有些优化的效果似乎并不显著;有时不妨一试。

常用函数优化

inline int abs(int x)
{int y=x>>31;return (x+y)^y;
}
inline int max(int x,int y)
{int m=(x-y)>>31;return (y&m)|(x&~m);
}
inline int min(int x,int y)
{int m=(x-y)>>31;return (y&m|x&~m)^(x^y);
}
inline void swap(int &x,int &y)
{x^=y,y^=x,x^=y;
}
inline int ave(int x,int y)
{return (x&y)+((x^y)>>1);
}

变量自增

++i快于i++

取模非常慢,尽量用减法代替

把函数中的循环变量在整个函数开头用register统一定义好

频繁使用的数用register,和inline一个用法,只不过有可能把变量存入CPU寄存器,来减少时间;某些生命周期不重叠的变量合并,减少创建变量空间的时间。

int main()
{register int i;for (i = 1; i <= n; ++i){// 逻辑部分}for (i = 1; i <= n; ++i){// 逻辑部分}/*下方循环多次使用i*/
}

减少使用STL,他们的常数特别大

现在大部分OJ平台都会自动开O2优化,所以可能STL常数问题可能也没那么严重,有时候也可以尝试手动开O2优化。据说有些时候可能会出现stl的map反而比自己手写map还快的情况…所以自己看情况吧

// 代码头部预处理指令手动打开O2
#pragma GCC optimize(2)

define比赋值更快

定义数组大小时尽量用奇数

尽量不要用bool,int是最快的

if()else() 语句比三元运算符慢;但if语句比三元运算符快

学会合理使用位运算

比如用它判奇偶性。n&1相当于n%2==1。还有一个操作:

inline void swap(int &x,int &y)
{x^=y^=x^=y;
}

http://www.ppmy.cn/news/1350288.html

相关文章

2024 年 5 款适用于免费 iPhone 数据恢复的工具软件

搜索一下&#xff0c;你会发现许多付费或免费的iPhone数据恢复工具声称它们可以帮助你以很高的成功率找回所有丢失的数据。然而&#xff0c;这正是问题所在。真的很难做出选择。为了进一步帮助您解决数据丢失问题&#xff0c;我们在此列出了 5 款最好的免费 iPhone 恢复软件供您…

深度学习的进展

#深度学习的进展# 深度学习的进展 深度学习是人工智能领域的一个重要分支&#xff0c;它利用神经网络模拟人类大脑的学习过程&#xff0c;通过大量数据训练模型&#xff0c;使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来&#xff0c;深度学习在多个领域取得…

配置Juniper虚墙vSRX基于策略的IPsec VPN(WEB方式)

正文共&#xff1a;1444 字 18 图&#xff0c;预估阅读时间&#xff1a;2 分钟 关于IPsec VPN&#xff0c;我们已经有一个合集了&#xff08;IPsec VPN&#xff09;。之前接触比较多的是H3C的IPsec VPN&#xff0c;后来接触的厂家多了&#xff0c;才发现大家的模型或者叫法还是…

linux系统下vscode portable版本的python环境搭建003:venv

这里写自定义目录标题 python安装方案一. 使用源码安装&#xff08;有[构建工具](https://blog.csdn.net/ResumeProject/article/details/136095629)的情况下&#xff09;方案二.使用系统包管理器 虚拟环境安装TESTCG 本文目的&#xff1a;希望在获得一个新的系统之后&#xff…

Codeforces Round 924 (Div. 2)

Codeforces Round 924 (Div. 2) Codeforces Round 924 (Div. 2) A. Rectangle Cutting 题意&#xff1a;给出a*b的矩形&#xff0c;沿着其中一个边恰好一分为二后可以组成一个新的矩形 思路&#xff1a;判断其中一个边是否可以被2整除以及二分后是否等于另一个边即可 AC cod…

第四节 zookeeper集群与分布式锁

目录 1. Zookeeper集群操作 1.1 客户端操作zk集群 1.2 模拟集群异常操作 1.3 curate客户端连接zookeeper集群 2. Zookeeper实战案例 2.1 创建项目引入依赖 2.2 获取zk客户端对象 2.3 常用API 2.4 客户端向服务端写入数据流程 2.5 服务器动态上下线、客户端动态监听 2…

ES节点故障的容错方案

ES节点故障的容错方案 1. es启动加载逻辑1.1 segment和translg组成和分析1.2 es节点启动流程1.3 es集群的初始化和启动过程 2. master高可用2.1 选主逻辑2.1.1 过滤选主的节点列表2.1.2 Bully算法2.1.2 类Raft协议2.1.3 元数据合并 2.2 HA切换 3. 分片高可用3.1 集群分片汇报3.…

Rust基础拾遗--核心功能

Rust基础拾遗 前言1.所有权与移动1.1 所有权 2.引用3.特型与泛型简介3.1 使用特型3.2 特型对象3.3 泛型函数与类型参数 4.实用工具特型5.闭包 前言 通过Rust程序设计-第二版笔记的形式对Rust相关重点知识进行汇总&#xff0c;读者通读此系列文章就可以轻松的把该语言基础捡起来…