多维时序 | Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测

news/2025/1/18 7:57:36/

多维时序 | Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测

目录

    • 多维时序 | Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测;
蜣螂算法优化GRU的学习率,隐藏层节点,正则化系数;
2.运行环境为Matlab2020b;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;

在这里插入图片描述

在这里插入图片描述

程序设计

  • 完整程序和数据下载方式资源处下载:Matlab实现DBO-GRU蜣螂算法优化门控循环单元多变量时间序列预测。
%%  优化算法参数设置
SearchAgents_no = 5;                   % 种群数量
Max_iteration = 8;                    % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-4, 10, 1e-4];                 % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2, 30, 1e-1];                 % 参数取值上界(学习率,隐藏层节点,正则化系数)fitness = @(x)fical(x,p_train,t_train,f_);%%  记录最佳参数
Best_pos(1, 2) = round(Best_pos(1, 2));
best_lr = Best_pos(1, 1);
best_hd = Best_pos(1, 2);
best_l2 = Best_pos(1, 3);%%  建立模型
% ----------------------  修改模型结构时需对应修改fical.m中的模型结构  --------------------------
layers = [sequenceInputLayer(f_)            % 输入层reluLayer                         % Relu激活层fullyConnectedLayer(outdim)       % 输出回归层regressionLayer];%%  参数设置
% ----------------------  修改模型参数时需对应修改fical.m中的模型参数  --------------------------
options = trainingOptions('adam', ...           % Adam 梯度下降算法'MaxEpochs', 500, ...                  % 最大训练次数 500'InitialLearnRate', best_lr, ...       % 初始学习率 best_lr'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.5, ...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400, ...        % 经过 400 次训练后 学习率为 best_lr * 0.5'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'ValidationPatience', Inf, ...         % 关闭验证'L2Regularization', best_l2, ...       % 正则化参数'Plots', 'training-progress', ...      % 画出曲线'Verbose', false);%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);%%  仿真验证
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1=double(T_sim1);
T_sim2=double(T_sim2);
pFit = fit;                       
pX = x; XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
for t = 1 : M    [fmax,B]=max(fit);worse= x(B,:);   r2=rand(1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i = 1 : pNum    if(r2<0.9)r1=rand(1);a=rand(1,1);if (a>0.1)a=1;elsea=-1;endx( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)elseaaa= randperm(180,1);if ( aaa==0 ||aaa==90 ||aaa==180 )x(  i , : ) = pX(  i , :);   endtheta= aaa*pi/180;   x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      endx(  i , : ) = Bounds( x(i , : ), lb, ub );    fit(  i  ) = fobj( x(i , : ) );end [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness valuebestXX = x( bestII, : );             % bestXX denotes the current optimum position R=1-t/M;                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew1 = bestXX.*(1-R); Xnew2 =bestXX.*(1+R);                    %%% Equation (3)Xnew1= Bounds( Xnew1, lb, ub );Xnew2 = Bounds( Xnew2, lb, ub );%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew11 = bestX.*(1-R); Xnew22 =bestX.*(1+R);                     %%% Equation (5)Xnew11= Bounds( Xnew11, lb, ub );Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  for i = ( pNum + 1 ) :12                  % Equation (4)

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718


http://www.ppmy.cn/news/1340525.html

相关文章

2024 RTE行业(实时互动行业)人才发展学习总结

解决方案 人才画像 开发者人才素质要求&#xff1a; 具备多个领域的技术知识注重团队合作&#xff0c;具备协作能力以用户为导向的用户体验意识具备创新思维和解决问题的能力需快速响应行业变化和持续的学习能力具备项目管理能力 学习和吸收新知识的渠道 RTE人才分类

【机器学习】AAAI 会议论文聚类分析

实验五&#xff1a;AAAI 会议论文聚类分析 ​ 本次实验以AAAI 2014会议论文数据为基础&#xff0c;要求实现或调用无监督聚类算法&#xff0c;了解聚类方法。 1 任务介绍 ​ 每年国际上召开的大大小小学术会议不计其数&#xff0c;发表了非常多的论文。在计算机领域的一些大…

cortexM c语言和汇编嵌套编程

编程环境是:stm32cubeIde 原因:很多操作需要使用底层来做,比如中断时的上下文数据保存。也就是说用到汇编来实现。 疑问:c语言怎么才能跟汇编很好的兼容在一起呢?必将是我下一步的必经探索之路了。 一、C语言和汇编兼容格式 asm( 汇编字符串 : 输出约束字符串 …

八数码问题dfs

import java.util.*;public class Main{static String end "12345678x";public static void swap(char[] arr,int x,int y){char temp arr[x];arr[x] arr[y];arr[y] temp;}public static int bfs(String start){//key:String 存放12345678x这种格式的字符//value…

轻松使用python照片太大,设置为宽21cm,300像素(成功)

在本篇博文中&#xff0c;我们将学习如何使用Python中的Pillow库来调整图片的尺寸&#xff0c;并且保持图片的长宽比例不变。这个功能在许多图像处理任务中非常有用&#xff0c;比如在网页设计、图像处理和打印等方面。 介绍 Python的Pillow库是一个功能强大的图像处理库&…

2024年数学建模美赛C题(预测 Wordle)——思路、程序总结分享

1: 问题描述与要求 《纽约时报》要求您对本文件中的结果进行分析&#xff0c;以回答几个问题。 问题1&#xff1a;报告结果的数量每天都在变化。开发一个模型来解释这种变化&#xff0c;并使用您的模型为2023年3月1日报告的结果数量创建一个预测区间。这个词的任何属性是否会…

Python实战:使用DrissionPage库爬取高考网大学信息

上一篇文章&#xff0c;我刚入门 DrissionPage 爬虫库&#xff0c;使用这个库爬取了拉钩网关于 Python 的职位信息。 今天再使用 DrissionPage 爬虫库练习一个案例&#xff0c;爬取高考网大学信息。 本次爬取到2885个大学信息&#xff0c;包含大学名称、所在省、市、大学标签信…

睿尔曼超轻量仿人机械臂—外置按钮盒使用说明

睿尔曼RM系列机械臂的控制方式有很多种&#xff0c;包括&#xff1a;示教器、JSON、API等。在此为大家介绍外置按钮盒的使用方法。 按钮盒接线安装 按钮盒外观如下图所示&#xff0c;有&#xff1a;急停、暂停、开始、继续。四个功能按钮。用户可通过这四个按钮来实现对机械臂运…