Flink CEP实现10秒内连续登录失败用户分析

news/2025/2/19 16:11:05/

1、什么是CEP?

Flink CEP即 Flink Complex Event Processing,是基于DataStream流式数据提供的一套复杂事件处理编程模型。你可以把他理解为基于无界流的一套正则匹配模型,即对于无界流中的各种数据(称为事件),提供一种组合匹配的功能。

在这里插入图片描述
上图中,以不同形状代表一个DataStream中不同属性的事件。以一个圆圈和一个三角组成一个Pattern后,就可以快速过滤出原来的DataStream中符合规律的数据。举个例子,比如很多网站需要对恶意登录的用户进行屏蔽,如果用户连续三次输入错误的密码,那就要锁定当前用户。在这个场景下,所有用户的登录行为就构成了一个无界的数据流DataStream。而连续三次登录失败就是一个匹配模型Pattern。CEP编程模型的功能就是从用户登录行为这个无界数据流DataStream中,找出符合这个匹配模Pattern的所有数据。这种场景下,使用我们前面介绍的各种DataStream API其实也是可以实现的,不过相对就麻烦很多。而CEP编程模型则提供了非常简单灵活的功能实现方式。

2、代码实现

2.1 引入maven依赖:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.roy</groupId><artifactId>FlinkDemo</artifactId><version>1.0</version><properties><flink.version>1.12.5</flink.version><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><log4j.version>2.12.1</log4j.version></properties><dependencies><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-api-java-bridge_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-planner-blink_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-table-common</artifactId><version>${flink.version}</version></dependency><!-- CEP主要是下面这个依赖 --><dependency><groupId>org.apache.flink</groupId><artifactId>flink-cep_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-statebackend-rocksdb_2.12</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-shaded-hadoop-2-uber</artifactId><version>2.8.3-10.0</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.14</version></dependency></dependencies><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-assembly-plugin</artifactId><version>3.1.0</version><configuration><descriptorRefs><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><executions><execution><id>make-assembly</id><phase>package</phase><goals><goal>single</goal></goals></execution></executions></plugin></plugins></build></project>

2.2 基本流程

//1、获取原始事件流
DataStream<Event> input = ......; 
//2、定义匹配器
Pattern<Event,?> pattern = .......; 
//3、获取匹配流
PatternStream<Event> patternStream = CEP.pattern(input, pattern);
//4、将匹配流中的数据处理形成结果数据流
DataStream<Result> resultStream = patternStream.process(new PatternProcessFunction<Event, Result>() {@Overridepublic void processMatch(Map<String, List<Event>> pattern,Context ctx,Collector<Result> out) throws Exception {}
});

2.3 完整代码

注意:代码运行前,先启动2.4 nlk socket服务

package com.roy.flink.project.userlogin;import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.functions.PatternProcessFunction;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.cep.pattern.conditions.SimpleCondition;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;import java.time.Duration;
import java.util.List;
import java.util.Map;/*** @desc 十秒内连续登录失败的用户分析。使用Flink CEP进行快速模式匹配*/
public class MyUserLoginAna {public static void main(String[] args) throws Exception {final StreamExecutionEnvironment env =StreamExecutionEnvironment.getExecutionEnvironment();// //BoundedOutOfOrdernessWatermarks定时提交Watermark的间隔env.getConfig().setAutoWatermarkInterval(1000L);// 使用Socket测试env.setParallelism(1);// 1、获取原始事件流(10.86.97.206改为实际地址)final DataStreamSource<String> dataStreamSource = env.socketTextStream("10.86.97.206",7777);final SingleOutputStreamOperator<UserLoginRecord> userLoginRecordStream = dataStreamSource.map(new MapFunction<String, UserLoginRecord>() {@Overridepublic UserLoginRecord map(String s) throws Exception {final String[] splitVal = s.split(",");return new UserLoginRecord(splitVal[0], Integer.parseInt(splitVal[1]), Long.parseLong(splitVal[2]));}}).assignTimestampsAndWatermarks(WatermarkStrategy.<UserLoginRecord>forBoundedOutOfOrderness(Duration.ofSeconds(1))// 主要针对乱序流,由于乱序流中需要等待迟到数据到齐,所以必须设置一个固定量的延迟时间.withTimestampAssigner((SerializableTimestampAssigner<UserLoginRecord>) (element, recordTimestamp) -> element.getLoginTime()));// 2、定义匹配器// 2.1:10秒内出现3次登录失败的记录(不一定连续)// Flink CEP定义消息匹配器。
//        final Pattern<UserLoginRecord, UserLoginRecord> pattern = Pattern.<UserLoginRecord>begin("start").where(new SimpleCondition<UserLoginRecord>() {
//            @Override
//            public boolean filter(UserLoginRecord userLoginRecord) throws Exception {
//                return 1 == userLoginRecord.getLoginRes();
//            }
//        }).times(3).within(Time.seconds(10));// 2.2:连续三次登录失败。next表示连续匹配。 不连续匹配使用followByfinal Pattern<UserLoginRecord, UserLoginRecord> pattern = Pattern.<UserLoginRecord>begin("one").where(new SimpleCondition<UserLoginRecord>() {@Overridepublic boolean filter(UserLoginRecord value) throws Exception {return 1 == value.getLoginRes();}}).next("two").where(new SimpleCondition<UserLoginRecord>() {@Overridepublic boolean filter(UserLoginRecord value) throws Exception {return 1 == value.getLoginRes();}}).next("three").where(new SimpleCondition<UserLoginRecord>() {@Overridepublic boolean filter(UserLoginRecord value) throws Exception {return 1 == value.getLoginRes();}}).within(Time.seconds(10));// 3、获取匹配流final PatternStream<UserLoginRecord> badUser = CEP.pattern(userLoginRecordStream, pattern);final MyProcessFunction myProcessFunction = new MyProcessFunction();// 4、将匹配流中的数据处理成结果数据流final SingleOutputStreamOperator<UserLoginRecord> badUserStream = badUser.process(myProcessFunction);badUserStream.print("badUser");env.execute("UserLoginAna");}// mainpublic static class MyProcessFunction extends PatternProcessFunction<UserLoginRecord,UserLoginRecord>{@Overridepublic void processMatch(Map<String, List<UserLoginRecord>> match, Context ctx, Collector<UserLoginRecord> out) throws Exception {// 针对2.1 连续3次登录失败
//            final List<UserLoginRecord> records = match.get("start");
//            for(UserLoginRecord record : records){
//                out.collect(record);
//            }// 针对2.2 非连续3次登录失败final List<UserLoginRecord> records = match.get("three");for(UserLoginRecord record : records){out.collect(record);}}// processMarch}// MyProcessFunction
}

UserLoginRecord对象,如下:


public class UserLoginRecord {private String userId;private int loginRes; // 0-成功, 1-失败private long loginTime;public UserLoginRecord() {}public UserLoginRecord(String userId, int loginRes, long loginTime) {this.userId = userId;this.loginRes = loginRes;this.loginTime = loginTime;}@Overridepublic String toString() {return "UserLoginRecord{" +"userId='" + userId + '\'' +", loginRes=" + loginRes +", loginTime=" + loginTime +'}';}public String getUserId() {return userId;}public void setUserId(String userId) {this.userId = userId;}public int getLoginRes() {return loginRes;}public void setLoginRes(int loginRes) {this.loginRes = loginRes;}public long getLoginTime() {return loginTime;}public void setLoginTime(long loginTime) {this.loginTime = loginTime;}
}

2.4 nlk模拟socket服务端

在这里插入图片描述

2.5 IDEA控制台打印

在这里插入图片描述


http://www.ppmy.cn/news/1338451.html

相关文章

蓝桥杯-循环节长度

两个整数做除法&#xff0c;有时会产生循环小数&#xff0c;其循环部分称为: 循环节。比如&#xff0c;11/136>0.8461553846153..... 其循环节为[846153] 共有 6 位。下面的方法&#xff0c;可以求出循环节的长度。请仔细阅读代码&#xff0c;并填写划线部分缺少的代码。 注…

20240130金融读报1分钟小得01

1、开放银行本质上是以用户需求为核心&#xff0c;以场景服务为切入点的共享平台金融模式&#xff0c;一定程度上加快了商业银行“隐形”和金融服务的无缝和泛在 2、利用自身优势进行差异化竞争&#xff0c;比如农信的客户面对面交流、全方位覆盖、政银紧密合作。针对劣势进行互…

跟着pink老师前端入门教程-day14+15

2.6 main 主体模块制作 HTML&#xff1a; <div class"w"><div class"main"><!-- 焦点图模块 --><div class"focus"><ul><li><img src"./images/banner_bg.png" alt""></li>…

“减半倒数80天”!比特币18个月后将飙涨四倍!但多数矿企短期面临亏损?

随着比特币现货ETF的顺利推出&#xff0c;比特币的另一个潜在的催化剂就是即将到来的第四次减半。据Bitcoin Block Half最新数据&#xff0c;目前距离比特币减半仅剩余约80天&#xff0c;预计将在今年4月22日发生&#xff0c;届时&#xff0c;每个区块的比特币奖励将从当前的6.…

《Docker极简教程》--前言--Docker的简介

Docker 是一种用于构建、部署和运行应用程序的开源平台&#xff0c;它使用容器技术来实现轻量级、可移植和自包含的应用程序环境。Docker 的核心思想是将应用程序及其依赖项打包到一个称为容器的封闭单元中&#xff0c;从而消除了在不同环境中运行应用程序时可能出现的许多兼容…

[BJDCTF2020]The mystery of ip

hint 猜测ip和XFF有关 加一个XFF 下面这一步是看了wp出来的&#xff1a;存在ssti 这里尝试用jinja的注入方法&#xff0c;页面回显了是php的smarty框架 查了一下smarty的注入方法&#xff0c;发现可以直接执行php命令 在根目录找到flag

测试面试题常见题

文章目录 功能测试一个完整的测试计划应该包含哪些内容一个完整的测试用例包含哪些内容&#xff1f;什么时候需要发测试报告&#xff1f;一份测试报告应该包含哪些内容&#xff1f;一个完整的缺陷报告应该包含哪些内容&#xff1f;简述等价类划分法并举例针对具体场景的测试用例…

iOS 微信分身(Windows手把手教程)

我之前教过大家IOS里面去创建微信应用副本(懂的都懂)。那个教程是MAC的教程版本。就有小伙伴问到&#xff0c;有没有Windows的教程版本呢。其实相差不多&#xff0c;但&#xff0c;不过谁叫我宠粉呢。 如果你使用的Mac版本的请参考这篇文章 1. iOS 微信应用副本 (免费&安…