TensorFlow2实战-系列教程2:神经网络分类任务

news/2024/11/14 12:51:05/

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

1、Mnist数据集

下载mnist数据集:

%matplotlib inline
from pathlib import Path
import requestsDATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
PATH.mkdir(parents=True, exist_ok=True)URL = "http://deeplearning.net/data/mnist/"
FILENAME = "mnist.pkl.gz"if not (PATH / FILENAME).exists():content = requests.get(URL + FILENAME).content(PATH / FILENAME).open("wb").write(content)

制作数据:

import pickle
import gzipwith gzip.open((PATH / FILENAME).as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")

简单展示数据:

from matplotlib import pyplot
import numpy as nppyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
print(x_train.shape)
print(y_train[0])

打印结果:

(50000, 784)
5

在这里插入图片描述

2、模型构建

在这里插入图片描述
在这里插入图片描述
输入为784神经元,经过隐层提取特征后为10个神经元,10个神经元的输出值经过softmax得到10个概率值,取出10个概率值中最高的一个就是神经网络的最后预测值

构建模型代码:

import tensorflow as tf
from tensorflow.keras import layers
model = tf.keras.Sequential()
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

选择损失函数,损失函数是机器学习一个非常重要的部分,基本直接决定了这个算法的效果,这里是多分类任务,一般我们就直接选用多元交叉熵函数就好了:
TensorFlow损失函数API

编译模型:

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),loss=tf.keras.losses.SparseCategoricalCrossentropy(),metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
  1. adam优化器,学习率为0.001
  2. 多元交叉熵损失函数
  3. 评价指标

模型训练:

model.fit(x_train, y_train, epochs=5, batch_size=64, validation_data=(x_valid, y_valid))

训练数据,训练标签,训练轮次,batch_size,验证集

打印结果:

Train on 50000 samples, validate on 10000 samples
Epoch 1/5 50000/50000  1s 29us
sample-loss: 115566 - sparse_categorical_accuracy: 0.1122 - val_loss: 364928.5786 - val_sparse_categorical_accuracy: 0.1064
Epoch 2/5 50000/50000 1s 21us
sample - loss: 837104 - sparse_categorical_accuracy: 0.1136 - val_loss: 1323287.7028 - val_sparse_categorical_accuracy: 0.1064
Epoch 3/5 50000/50000 1s 20us
sample - loss: 1892431 - sparse_categorical_accuracy: 0.1136 - val_loss: 2448062.2680 - val_sparse_categorical_accuracy: 0.1064
Epoch 4/5 50000/50000 1s 20us
sample - loss: 3131130 - sparse_categorical_accuracy: 0.1136 - val_loss: 3773744.5348 - val_sparse_categorical_accuracy: 0.1064
Epoch 5/5 50000/50000 1s 20us
sample - loss: 4527781 - sparse_categorical_accuracy: 0.1136 - val_loss: 5207194.3728 - val_sparse_categorical_accuracy: 0.1064
<tensorflow.python.keras.callbacks.History at 0x1d3eb9015f8>

模型保存:

model.save('Mnist_model.h5')

3、TensorFlow常用模块

3.1 Tensor格式转换

创建一组数据

import numpy as np
input_data = np.arange(16)
input_data

打印结果:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])

转换成TensorFlow格式的数据:

dataset = tf.data.Dataset.from_tensor_slices(input_data)
for data in dataset:print (data)

将一个ndarray转换成
打印结果:
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)

tf.Tensor(14, shape=(), dtype=int32)
tf.Tensor(15, shape=(), dtype=int32)

3.2repeat操作

dataset = tf.data.Dataset.from_tensor_slices(input_data)
dataset = dataset.repeat(2)
for data in dataset:print (data)

tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)

tf.Tensor(14, shape=(), dtype=int32)
tf.Tensor(15, shape=(), dtype=int32)
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)

tf.Tensor(14, shape=(), dtype=int32)
tf.Tensor(15, shape=(), dtype=int32)

会将当前的输出重复一遍

3.3 batch操作

dataset = tf.data.Dataset.from_tensor_slices(input_data)
dataset = dataset.repeat(2).batch(4)
for data in dataset:print (data)

tf.Tensor([0 1 2 3], shape=(4,), dtype=int32)
tf.Tensor([4 5 6 7], shape=(4,), dtype=int32)
tf.Tensor([ 8 9 10 11], shape=(4,), dtype=int32)
tf.Tensor([12 13 14 15], shape=(4,), dtype=int32)
tf.Tensor([0 1 2 3], shape=(4,), dtype=int32)
tf.Tensor([4 5 6 7], shape=(4,), dtype=int32)
tf.Tensor([ 8 9 10 11], shape=(4,), dtype=int32)
tf.Tensor([12 13 14 15], shape=(4,), dtype=int32)

将原来的数据按照4个为一个批次

3.4 shuffle操作

dataset = tf.data.Dataset.from_tensor_slices(input_data).shuffle(buffer_size=10).batch(4)
for data in dataset:print (data)

tf.Tensor([ 9 8 11 3], shape=(4,), dtype=int32)
tf.Tensor([ 5 6 1 13], shape=(4,), dtype=int32)
tf.Tensor([14 15 4 2], shape=(4,), dtype=int32)
tf.Tensor([12 7 0 10], shape=(4,), dtype=int32)

shuffle操作,直接翻译过来就是洗牌,把当前的数据进行打乱操作
buffer_size=10,就是缓存10来进行打乱取数据


http://www.ppmy.cn/news/1333603.html

相关文章

CEF框架中的一些宏定义(二):CEF_CURRENTLY_ON

CEF_CURRENTLY_ON 前面有一篇分析进程和线程的文章提到过&#xff1a; CEF线程模型与初始化过程详解 在Browser进程中在CEF框架中&#xff0c;很多代码都需要由这个browser的主线程来执行&#xff0c;宏定义CEF_CURRENTLY_ON就是用于这个判断的。 这个宏定义及其相关的宏定义…

vue3+elementPlus pc和小程序ai聊天文生图

websocket封装可以看上一篇文章 //pc端 <template><div class"common-layout theme-white"><el-container><el-aside><div class"title-box"><span>AI Chat</span></div><div class"chat-list&…

2024阿里云优惠,云服务器61元一年起

2024年最新阿里云主机价格&#xff0c;最低配置2核2G3M起步&#xff0c;只要61元一年&#xff0c;还可以在阿里云CLUB中心领券 aliyun.club 专用满减优惠券。 1、云服务器ECS经济型e实例2核2G、3M固定带宽99元一年 2、轻量应用服务器2核2G3M带宽轻量服务器一年61元 3、阿里云轻…

Vite+Electron快速构建一个VUE3桌面应用(二)——动态模块热重载

一. 简介 在上一篇文章ViteElectron快速构建一个VUE3桌面应用中&#xff0c;我们了解了如何使用Vite和Electron来快速构建一个Vue3桌面应用。但是&#xff0c;之前构建的应用仅仅是一个简单的版本。在开发过程中&#xff0c;为了更好的开发体验&#xff0c;在开发electron的时…

用Excel辅助做数独

做数独游戏的时候&#xff0c;画在纸上很容易弄花眼&#xff0c;所以我考虑用Excel辅助做一个。 界面如下&#xff1a; 按下初始化表格区域按钮&#xff0c;会在所有单元格中填充“123456789”。如下图&#xff1a; 当某个单元格删除得只剩一个数字时&#xff0c;会将同一行、…

Easysearch:语义搜索、知识图和向量数据库概述

什么是语义搜索&#xff1f; 语义搜索是一种使用自然语言处理算法来理解单词和短语的含义和上下文以提供更准确的搜索结果的搜索技术。旨在更好地理解用户的意图和查询内容&#xff0c;而不仅仅是根据关键词匹配&#xff0c;还通过分析查询的语义和上下文来提供更准确和相关的…

安全小记-ngnix负载均衡

目录 一.配置ngnix环境二.nginx负载均衡 一.配置ngnix环境 本次实验使用的是centos7,首先默认yum源已经配置好&#xff0c;没有配置好的自行访问阿里云镜像站 https://developer.aliyun.com/mirror/ 接着进行安装工作 1.首先创建Nginx的目录并进入&#xff1a; mkdir /soft &…

vue 样式隔离原理

日常写单文件组件时&#xff0c;会在style添加scoped属性&#xff0c;如<style scoped>&#xff0c;目的是为了隔离组件与组件之间的样式&#xff0c;如下面的例子&#xff1a; <template><p class"foo">这是foo</p><p class"bar&q…