深入浅出 diffusion(2):pytorch 实现 diffusion 加噪过程

news/2025/2/13 5:11:21/

         我在上篇博客深入浅出 diffusion(1):白话 diffusion 原理(无公式)中介绍了 diffusion 的一些基本原理,其中谈到了 diffusion 的加噪过程,本文用pytorch 实现下到底是怎么加噪的。

import torch
import math
import numpy as np
from PIL import Image
import requests
import matplotlib.pyplot as plot
import cv2def linear_beta_schedule(timesteps):"""linear schedule, proposed in original ddpm paper"""scale = 1000 / timestepsbeta_start = scale * 0.0001beta_end = scale * 0.02return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)def cosine_beta_schedule(timesteps, s = 0.008):"""cosine scheduleas proposed in https://openreview.net/forum?id=-NEXDKk8gZ"""steps = timesteps + 1t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timestepsalphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2alphas_cumprod = alphas_cumprod / alphas_cumprod[0]betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])return torch.clip(betas, 0, 0.999)# 时间步(timestep)定义为1000
timesteps = 1000# 定义Beta Schedule, 选择线性版本,同DDPM原文一致,当然也可以换成cosine_beta_schedule
betas = linear_beta_schedule(timesteps=timesteps)# 根据beta定义alpha 
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas)# 计算前向过程 diffusion q(x_t | x_{t-1}) 中所需的
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)def extract(a, t, x_shape):batch_size = t.shape[0]out = a.gather(-1, t.cpu())return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)# 前向加噪过程: forward diffusion process
def q_sample(x_start, t, noise=None):if noise is None:noise = torch.randn_like(x_start)cv2.imwrite('noise.png', noise.numpy()*255)sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, x_start.shape)sqrt_one_minus_alphas_cumprod_t = extract(sqrt_one_minus_alphas_cumprod, t, x_start.shape)print('sqrt_alphas_cumprod_t :', sqrt_alphas_cumprod_t)print('sqrt_one_minus_alphas_cumprod_t :', sqrt_one_minus_alphas_cumprod_t)return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise# 图像后处理
def get_noisy_image(x_start, t):# add noisex_noisy = q_sample(x_start, t=t)# turn back into PIL imagenoisy_image = x_noisy.squeeze().numpy()return noisy_image...# 展示图像, t=0, 50, 100, 500的效果
x_start = cv2.imread('img.png') / 255.0
x_start = torch.tensor(x_start, dtype=torch.float)
cv2.imwrite('img_0.png', get_noisy_image(x_start, torch.tensor([0])) * 255.0)
cv2.imwrite('img_50.png', get_noisy_image(x_start, torch.tensor([50])) * 255.0)
cv2.imwrite('img_100.png', get_noisy_image(x_start, torch.tensor([100])) * 255.0)
cv2.imwrite('img_500.png', get_noisy_image(x_start, torch.tensor([500])) * 255.0)
cv2.imwrite('img_999.png', get_noisy_image(x_start, torch.tensor([999])) * 255.0)sqrt_alphas_cumprod_t : tensor([[[0.9999]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.0100]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.9849]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.1733]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.9461]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.3238]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.2789]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.9603]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.0064]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[1.0000]]], dtype=torch.float64)

        以下分别为原图,t = 0, 50, 100, 500, 999 的结果。

        可见,随着 t 的加大,原图对应的比例系数减小,噪声的强度系数加大,t = 500的时候,隐约可见人脸轮廓,t = 999 的时候,人脸彻底淹没在噪声里面了。


http://www.ppmy.cn/news/1332611.html

相关文章

Shell中的测试及语句

目录 一、测试 (一)简单条件测试 (二)逻辑测试 1.符号&& 2.符号|| (三)整数比较 (四)字符串比较 1.相等比较 2.不同比较 3.字符串长度检查 4.双中括号 [[ ]] …

[GXYCTF2019]BabySQli1

单引号闭合,列数为三列,但是没有期待的1 2 3回显,而是显示wrong pass。 尝试报错注入时发现过滤了圆括号,网上搜索似乎也没找到能绕过使用圆括号的方法,那么按以往爆库爆表爆字段的方法似乎无法使用了 在响应报文找到一…

视频尺寸魔方:分层遮掩3D扩散模型在视频尺寸延展的应用

▐ 摘要 视频延展(Video Outpainting)是对视频的边界进行扩展的任务。与图像延展不同,视频延展需要考虑到填充区域的时序一致性,这使得问题更具挑战性。在本文中,我们介绍了一个新颖的基于扩散模型的视频尺寸延展方法——分层遮掩3D扩散模型(…

【C#】基础巩固

最近写代码的时候各种灵感勃发,有了灵感,就该实现了,可是,实现起来有些不流畅,总是有这样,那样的卡壳,总结下来发现了几个问题。 1、C#基础内容不是特别牢靠,理解的不到位&#xff…

图像RGB/YUV原理

一、RGB/YUV原理 RGB 和 YUV 是两种常见的图像颜色编码格式,它们在数字图像处理和视频编码中都有广泛的应用。 1.1 RGB(红绿蓝) RGB 是指红色(Red)、绿色(Green)、蓝色(Blue&…

虚拟机打开之后,无法响应

文章目录 前言一、虚拟机无法响应的前因后果二、解决办法1.找到安装的虚拟机的位置2.将上面的带.lck 的文件删除3. 重新启动虚拟机 总结 前言 虚拟机一直用的好好的,突然打开后无法响应,在此记录下解决的过程。 一、虚拟机无法响应的前因后果 1、虚拟机…

C++ 设计模式之责任链模式

【声明】本题目来源于卡码网(卡码网KamaCoder) 【提示:如果不想看文字介绍,可以直接跳转到C编码部分】 【设计模式大纲】 【简介】 --什么是责任链模式(第21种设计模式) 责任链模式是⼀种行为型设计模式&am…

算法基础之线段树

文章目录 线段树 线段树 线段树的原理十分简单,但是在代码上会相对复杂一点 他也是用来维护一个序列,是一个完全二叉树的形状 对于每一个节点是一个结构体 struct Node {int L,R; int sum; // 以和为例 };假设序列为1到7,那么根节点存的…