文章目录
- 1.聚集索引(clustered index)
- 2.非聚集索引(Non-clustered index)
- 3.聚集索引和非聚集索引区别?
- 4.覆盖索引(covering index)
- 5、复合索引 (Composite Index)
- 6.索引最左匹配原则
1.聚集索引(clustered index)
聚集索引(Clustered Index)是数据库中一种常见的索引类型,它定义了表中数据的物理存储顺序。在聚集索引中,数据行按照索引键的顺序进行排序,并且表中的数据实际上是按照聚集索引的顺序存储的。
以下是聚集索引的一些特点和定义要点:
- 1、数据行的物理存储顺序:聚集索引决定了表中数据行的物理存储顺序,这意味着具有相邻索引键的行在物理上也是相邻存储的。
- 2、主键索引通常是聚集索引:在大多数关系型数据库管理系统(RDBMS)中,默认的主键索引就是聚集索引。如果表没有显式定义主键,则某些数据库系统可能会选择一个唯一索引作为聚集索引。
- 3、数据访问的效率:由于聚集索引中的数据行按照索引键的顺序存储,因此对于使用索引键进行查找或范围查询的操作,聚集索引可以提供较高的查询效率。
- 4、表只能有一个聚集索引:每个表只能有一个聚集索引,这是因为数据行只能按照一种方式进行排序和存储)
2.非聚集索引(Non-clustered index)
非聚集索引(Non-clustered Index)是数据库中另一种常见的索引类型,与聚集索引相对。与聚集索引不同,非聚集索引的索引键值不决定数据行的物理存储顺序。相反,它们创建一个独立的数据结构,其中包含索引键和指向实际数据行的指针。
以下是非聚集索引的一些定义要点:
- 1、数据行的物理存储顺序:与聚集索引不同,非聚集索引并不决定数据行的物理存储顺序。它们仅提供了一个独立的数据结构,用于快速查找索引键。
- 2、索引键和指针:非聚集索引由索引键和指向实际数据行的指针组成。索引键是用于快速定位和排序的值,而指针指向数据行的物理位置。
- 3、 多个非聚集索引:对于一个表,可以创建多个非聚集索引,每个非聚集索引都可以基于不同的列或列组合。
- 4、查询效率:非聚集索引可以提供快速的查询效率,特别是当查询需要检索特定列或进行范围查询时,非聚集索引可以减少数据访问的成本。
- 5、更新和维护开销:与聚集索引相比,非聚集索引在数据更新和插入操作时的开销较小。然而,对于频繁的更新操作,维护多个非聚集索引可能会导致一定的性能影响。
3.聚集索引和非聚集索引区别?
非聚集索引和聚集索引在数据库中具有以下区别:
- 1、物理排序顺序:聚集索引决定了表中数据行的物理存储顺序,而非聚集索引没有这个作用。聚集索引的数据行按照索引键的顺序进行排序,并且表中的数据实际上是按照聚集索引的顺序存储的。非聚集索引则是创建一个独立的数据结构,其中包含索引键和指向实际数据行的指针。
- 2、数据访问方式:使用聚集索引进行查询时,数据库可以直接按照索引的顺序快速访问数据行。而非聚集索引则需要通过索引键值查找到对应的指针,然后再根据指针找到实际的数据行。因此,聚集索引通常可以提供更快的数据访问速度。
- 3、存储方式:聚集索引决定了数据行的物理存储方式,因此一个表只能有一个聚集索引。而非聚集索引则是独立于数据行的存储结构,一个表可以有多个非聚集索引。
- 4、更新开销:对于聚集索引,当数据行发生更新操作时,可能需要重新排序和移动数据行的位置,这可能导致额外的开销。而非聚集索引的更新开销相对较小,因为它们不影响实际数据行的物理存储顺序。
- 5、主键索引:在大多数关系型数据库管理系统(RDBMS)中,默认的主键索引通常是聚集索引。如果表没有显式定义主键,则某些数据库系统可能会选择一个唯一索引作为聚集索引。
综上所述,非聚集索引和聚集索引在数据的物理存储方式、数据访问方式和更新开销等方面存在明显的区别。在设计和选择索引时,需要考虑具体的查询需求、数据访问模式和更新频率,以确定使用哪种索引类型或它们的组合来优化数据库的性能。
4.覆盖索引(covering index)
覆盖索引(Covering Index)是一种特殊的索引,它包含了查询涉及的所有列,而不仅仅是索引列本身。通过创建覆盖索引,查询可以直接从索引中获取所需的数据,而无需回到原始数据行,从而提高查询性能。
以下是覆盖索引的一些要点:
- 1、包含索引列以及查询涉及的其他列:覆盖索引包含了查询所需的所有列,包括索引列以及查询涉及的其他列。这样,查询可以直接从索引中获取所需的数据,而无需访问原始数据行。
- 2、减少访问磁盘的次数:通过使用覆盖索引,数据库可以减少访问磁盘的次数。因为覆盖索引包含了查询所需的所有列,所以数据库可以直接从索引中读取数据,而不需要额外的磁盘访问来获取缺失的列。
- 3、提高查询性能:由于覆盖索引可以减少磁盘访问次数,从而提高查询的性能。这对于复杂的查询或需要访问大量数据的查询尤为重要。
- 4、空间和维护开销:覆盖索引需要占用更多的存储空间,因为它包含了更多的列。此外,由于覆盖索引需要维护额外的列,因此在数据更新时可能会增加一些维护开销。
- 5、选择适当的列和查询:为了获得最大的性能收益,选择适当的列和查询来创建覆盖索引非常重要。覆盖索引在某些查询模式和特定的列选择上可能更加有效。
需要注意的是,并非所有的查询都适合使用覆盖索引。在设计和创建覆盖索引时,需要综合考虑查询的性能需求、查询模式、数据访问模式以及索引的空间和维护开销。
简单来说就是索引中包含索要需要查询的内容,这样可以直接从索引中获取数据,而不需要回表查询。但是这样势必会造成额外的空间和维护开销。
5、复合索引 (Composite Index)
复合索引(Composite Index)是由多个列组成的索引,它可以涵盖多个列的查询条件。复合索引允许在一个索引中定义多个列的组合,以便在查询中同时利用这些列进行索引扫描和匹配。
复合索引的特点和使用包括以下几个方面:
- 1、列的顺序:复合索引中的列可以按照特定的顺序进行定义。通常,将最常用于查询条件的列放在索引的最左侧,以便最大程度地利用索引进行查询优化。查询中涉及的列可以是复合索引的一部分,而不需要涉及所有列。
- 2、查询优化:复合索引可以提供更精确的查询性能,特别是当查询需要根据多个列进行过滤或排序时。通过使用复合索引,数据库引擎可以更准确地定位满足查询条件的数据行,减少不必要的扫描和比较操作,从而提高查询效率。
- 3、索引覆盖:当复合索引涵盖了查询所需的所有列时,称之为索引覆盖(Index Covering)。索引覆盖可以进一步提高查询性能,因为查询可以完全从索引中获取所需的数据,无需访问原始数据行。
- 4、设计考虑:在设计复合索引时,需要综合考虑查询模式、数据访问模式和列的选择。选择适当的列和顺序可以提高查询性能,但过多或不必要的列可能会增加索引的大小和维护成本。
6.索引最左匹配原则
索引最左匹配原则(Index Leftmost Prefix Rule)是指在使用复合索引(Composite Index)时,索引的左侧列将优先用于查询条件的匹配。当查询中使用了复合索引的一部分列作为查询条件时,数据库引擎可以利用这个索引来加速查询,但只能从最左侧的列开始进行匹配。
以下是索引最左匹配原则的一些要点:
- 1、复合索引:复合索引是由多个列组成的索引,它可以涵盖多个列的查询条件。例如,一个复合索引可以是 (col1, col2, col3)。
- 2、最左匹配:索引最左匹配原则意味着在查询时,只有从索引的最左侧列开始连续匹配,才能利用复合索引进行加速。换句话说,查询条件中的列必须是复合索引中最左侧的列,才能使查询受益于索引。
- 3、匹配顺序:如果查询条件中同时使用了复合索引的多个列,但不是从最左侧列开始,那么索引可能无法有效利用,查询性能可能会下降。因此,在设计查询条件时,应优先考虑使用最左侧列。
- 4、索引覆盖:当查询中的列与复合索引的所有列完全匹配时,称之为索引覆盖(Index Covering)。索引覆盖可以进一步提高查询性能,因为查询可以完全从索引中获取所需的数据,无需访问原始数据行。
需要注意的是,索引最左匹配原则只适用于复合索引,对于单列索引没有影响。在设计复合索引时,应根据查询模式、数据访问模式和列的选择来决定索引的顺序,以最大程度地利用索引并提高查询性能。