概念杂记--到底啥是啥?(数据库篇)

news/2024/12/23 3:54:56/

文章目录

    • 1.聚集索引(clustered index)
    • 2.非聚集索引(Non-clustered index)
    • 3.聚集索引和非聚集索引区别?
    • 4.覆盖索引(covering index)
    • 5、复合索引 (Composite Index)
    • 6.索引最左匹配原则

1.聚集索引(clustered index)

聚集索引(Clustered Index)是数据库中一种常见的索引类型,它定义了表中数据的物理存储顺序。在聚集索引中,数据行按照索引键的顺序进行排序,并且表中的数据实际上是按照聚集索引的顺序存储的。
以下是聚集索引的一些特点和定义要点:

  • 1、数据行的物理存储顺序:聚集索引决定了表中数据行的物理存储顺序,这意味着具有相邻索引键的行在物理上也是相邻存储的。
  • 2、主键索引通常是聚集索引:在大多数关系型数据库管理系统(RDBMS)中,默认的主键索引就是聚集索引。如果表没有显式定义主键,则某些数据库系统可能会选择一个唯一索引作为聚集索引。
  • 3、数据访问的效率:由于聚集索引中的数据行按照索引键的顺序存储,因此对于使用索引键进行查找或范围查询的操作,聚集索引可以提供较高的查询效率。
  • 4、表只能有一个聚集索引:每个表只能有一个聚集索引,这是因为数据行只能按照一种方式进行排序和存储)

2.非聚集索引(Non-clustered index)

非聚集索引(Non-clustered Index)是数据库中另一种常见的索引类型,与聚集索引相对。与聚集索引不同,非聚集索引的索引键值不决定数据行的物理存储顺序。相反,它们创建一个独立的数据结构,其中包含索引键和指向实际数据行的指针。
以下是非聚集索引的一些定义要点:

  • 1、数据行的物理存储顺序:与聚集索引不同,非聚集索引并不决定数据行的物理存储顺序。它们仅提供了一个独立的数据结构,用于快速查找索引键。
  • 2、索引键和指针:非聚集索引由索引键和指向实际数据行的指针组成。索引键是用于快速定位和排序的值,而指针指向数据行的物理位置。
  • 3、 多个非聚集索引:对于一个表,可以创建多个非聚集索引,每个非聚集索引都可以基于不同的列或列组合。
  • 4、查询效率:非聚集索引可以提供快速的查询效率,特别是当查询需要检索特定列或进行范围查询时,非聚集索引可以减少数据访问的成本。
  • 5、更新和维护开销:与聚集索引相比,非聚集索引在数据更新和插入操作时的开销较小。然而,对于频繁的更新操作,维护多个非聚集索引可能会导致一定的性能影响。

3.聚集索引和非聚集索引区别?

非聚集索引和聚集索引在数据库中具有以下区别:

  • 1、物理排序顺序:聚集索引决定了表中数据行的物理存储顺序,而非聚集索引没有这个作用。聚集索引的数据行按照索引键的顺序进行排序,并且表中的数据实际上是按照聚集索引的顺序存储的。非聚集索引则是创建一个独立的数据结构,其中包含索引键和指向实际数据行的指针。
  • 2、数据访问方式:使用聚集索引进行查询时,数据库可以直接按照索引的顺序快速访问数据行。而非聚集索引则需要通过索引键值查找到对应的指针,然后再根据指针找到实际的数据行。因此,聚集索引通常可以提供更快的数据访问速度。
  • 3、存储方式:聚集索引决定了数据行的物理存储方式,因此一个表只能有一个聚集索引。而非聚集索引则是独立于数据行的存储结构,一个表可以有多个非聚集索引。
  • 4、更新开销:对于聚集索引,当数据行发生更新操作时,可能需要重新排序和移动数据行的位置,这可能导致额外的开销。而非聚集索引的更新开销相对较小,因为它们不影响实际数据行的物理存储顺序。
  • 5、主键索引:在大多数关系型数据库管理系统(RDBMS)中,默认的主键索引通常是聚集索引。如果表没有显式定义主键,则某些数据库系统可能会选择一个唯一索引作为聚集索引。

综上所述,非聚集索引和聚集索引在数据的物理存储方式数据访问方式更新开销等方面存在明显的区别。在设计和选择索引时,需要考虑具体的查询需求、数据访问模式和更新频率,以确定使用哪种索引类型或它们的组合来优化数据库的性能。

4.覆盖索引(covering index)

覆盖索引(Covering Index)是一种特殊的索引,它包含了查询涉及的所有列,而不仅仅是索引列本身。通过创建覆盖索引,查询可以直接从索引中获取所需的数据,而无需回到原始数据行,从而提高查询性能。
以下是覆盖索引的一些要点:

  • 1、包含索引列以及查询涉及的其他列:覆盖索引包含了查询所需的所有列,包括索引列以及查询涉及的其他列。这样,查询可以直接从索引中获取所需的数据,而无需访问原始数据行。
  • 2、减少访问磁盘的次数:通过使用覆盖索引,数据库可以减少访问磁盘的次数。因为覆盖索引包含了查询所需的所有列,所以数据库可以直接从索引中读取数据,而不需要额外的磁盘访问来获取缺失的列。
  • 3、提高查询性能:由于覆盖索引可以减少磁盘访问次数,从而提高查询的性能。这对于复杂的查询或需要访问大量数据的查询尤为重要。
  • 4、空间和维护开销:覆盖索引需要占用更多的存储空间,因为它包含了更多的列。此外,由于覆盖索引需要维护额外的列,因此在数据更新时可能会增加一些维护开销。
  • 5、选择适当的列和查询:为了获得最大的性能收益,选择适当的列和查询来创建覆盖索引非常重要。覆盖索引在某些查询模式和特定的列选择上可能更加有效。

需要注意的是,并非所有的查询都适合使用覆盖索引。在设计和创建覆盖索引时,需要综合考虑查询的性能需求、查询模式、数据访问模式以及索引的空间和维护开销。

简单来说就是索引中包含索要需要查询的内容,这样可以直接从索引中获取数据,而不需要回表查询。但是这样势必会造成额外的空间和维护开销。

5、复合索引 (Composite Index)

复合索引(Composite Index)是由多个列组成的索引,它可以涵盖多个列的查询条件。复合索引允许在一个索引中定义多个列的组合,以便在查询中同时利用这些列进行索引扫描和匹配。

复合索引的特点和使用包括以下几个方面:

  • 1、列的顺序:复合索引中的列可以按照特定的顺序进行定义。通常,将最常用于查询条件的列放在索引的最左侧,以便最大程度地利用索引进行查询优化。查询中涉及的列可以是复合索引的一部分,而不需要涉及所有列。
  • 2、查询优化:复合索引可以提供更精确的查询性能,特别是当查询需要根据多个列进行过滤或排序时。通过使用复合索引,数据库引擎可以更准确地定位满足查询条件的数据行,减少不必要的扫描和比较操作,从而提高查询效率。
  • 3、索引覆盖:当复合索引涵盖了查询所需的所有列时,称之为索引覆盖(Index Covering)。索引覆盖可以进一步提高查询性能,因为查询可以完全从索引中获取所需的数据,无需访问原始数据行。
  • 4、设计考虑:在设计复合索引时,需要综合考虑查询模式、数据访问模式和列的选择。选择适当的列和顺序可以提高查询性能,但过多或不必要的列可能会增加索引的大小和维护成本。

6.索引最左匹配原则

索引最左匹配原则(Index Leftmost Prefix Rule)是指在使用复合索引(Composite Index)时,索引的左侧列将优先用于查询条件的匹配。当查询中使用了复合索引的一部分列作为查询条件时,数据库引擎可以利用这个索引来加速查询,但只能从最左侧的列开始进行匹配。
以下是索引最左匹配原则的一些要点:

  • 1、复合索引:复合索引是由多个列组成的索引,它可以涵盖多个列的查询条件。例如,一个复合索引可以是 (col1, col2, col3)。
  • 2、最左匹配:索引最左匹配原则意味着在查询时,只有从索引的最左侧列开始连续匹配,才能利用复合索引进行加速。换句话说,查询条件中的列必须是复合索引中最左侧的列,才能使查询受益于索引。
  • 3、匹配顺序:如果查询条件中同时使用了复合索引的多个列,但不是从最左侧列开始,那么索引可能无法有效利用,查询性能可能会下降。因此,在设计查询条件时,应优先考虑使用最左侧列。
  • 4、索引覆盖:当查询中的列与复合索引的所有列完全匹配时,称之为索引覆盖(Index Covering)。索引覆盖可以进一步提高查询性能,因为查询可以完全从索引中获取所需的数据,无需访问原始数据行。

需要注意的是,索引最左匹配原则只适用于复合索引,对于单列索引没有影响。在设计复合索引时,应根据查询模式、数据访问模式和列的选择来决定索引的顺序,以最大程度地利用索引并提高查询性能。


http://www.ppmy.cn/news/1330906.html

相关文章

数据结构之最优二叉树

数据结构之最优二叉树 1、最优二叉树2、哈夫曼编码 数据结构是程序设计的重要基础,它所讨论的内容和技术对从事软件项目的开发有重要作用。学习数据结构要达到的目标是学会从问题出发,分析和研究计算机加工的数据的特性,以便为应用所涉及的数…

大模型+自动驾驶

论文:https://arxiv.org/pdf/2401.08045.pdf 大型基础模型的兴起,它们基于广泛的数据集进行训练,正在彻底改变人工智能领域的面貌。例如SAM、DALL-E2和GPT-4这样的模型通过提取复杂的模式,并在不同任务中有效地执行,从…

OpenKruiseGame × KubeSphere 联合发布游戏服运维控制台,推动云原生游戏落地

作者:云原生游戏社区 近日,云原生游戏开源社区旗下 OpenKruiseGame(以下简称:OKG)基于 KubeSphere 4.0 LuBan 架构开发的游戏服运维控制台 OKG Dashboard 正式发布!现已上架 KubeSphere Marketplace 云原生…

Deepin_Ubuntu_查看树形目录结构(tree)

Linux系统(Deepin、Ubuntu)中,可以使用tree命令来查看树形目录结构,下面是一些示例: 查看当前目录的树形结构: tree查看指定目录的树形结构,例如/etc/X11/fonts目录: tree /etc/X…

【算法专题】动态规划之路径问题

动态规划2.0 动态规划 - - - 路径问题1. 不同路径2. 不同路径Ⅱ3. 珠宝的最高价值4. 下降路径最小和5. 最小路径和6. 地下城游戏 动态规划 - - - 路径问题 1. 不同路径 题目链接 -> Leetcode -62.不同路径 Leetcode -62.不同路径 题目:一个机器人位于一个 m …

『C++成长记』模板

🔥博客主页:小王又困了 📚系列专栏:C 🌟人之为学,不日近则日退 ❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、泛型编程 二、函数模板 📒2.1函数模板概念 📒2.2函数…

【GitHub项目推荐--不错的 Java 开源项目】【转载】

1 基于 Java 的沙盒塔防游戏 Mindustry 是一款用 Java 编写的沙盒塔防游戏。玩家需要建造精密的传送带供应链,提供炮塔弹药,生产建筑材料,保护建筑并抵御敌人。也可以在跨平台多人合作游戏中与朋友一起战斗,或组队进行 PVP 比赛。…

展锐T618_虎贲T618紫光展锐安卓核心板规格参数

基于紫光展锐八核T618平台的纯国产化方案,采用了开放的智能Android操作系统,并集成了4G网络、2.5G5G双频WIFI(可支持1*1 MIMO)、BLUETOOTH近距离无线传输技术以及GNSS无线定位技术。用户可以根据特定场合的需求,选择合适的嵌入式ARM核心模块&…