PyTorch 中的距离函数深度解析:掌握向量间的距离和相似度计算

news/2025/4/1 3:36:38/

目录

Pytorch中Distance functions详解

pairwise_distance

用途

用法

参数

数学理论公式

示例代码

cosine_similarity

用途

用法

参数

数学理论

示例代码 

输出结果

pdist

用途

用法

参数

数学理论

示例代码

总结 


Pytorch中Distance functions详解

pairwise_distance

torch.nn.functional.pairwise_distance 是 PyTorch 中的一个函数,用于计算两组向量之间的成对距离。这个函数广泛应用于机器学习和深度学习中,尤其是在处理距离相关的任务,如聚类、相似度计算等。

用途

  • 计算两组向量间的成对距离,常用于度量向量间的相似性或差异性。
  • 用于机器学习中的距离度量,如k-最近邻 (k-NN)、聚类等。

用法

torch.nn.functional.pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False)

 

  • x1, x2: 输入的两组向量,必须有相同的维度。
  • p: 距离计算的幂指数,默认为2,即欧几里得距离。
  • eps: 一个小的数值,用于保证数值稳定性。
  • keepdim: 是否保持输出的维度。

参数

  • x1: 第一组向量的张量。
  • x2: 第二组向量的张量。
  • p: 距离度量的幂指数,默认为2(欧几里得距离)。
  • eps: 避免除零错误的小数,默认为1e-6。
  • keepdim: 在输出中保持原始输入的维度结构。

数学理论公式

对于向量 x1_{i}​ 和 x2_{i}pairwise_distance 计算的是 p 范数下的距离:

d(x1_{i},x2_{i})=(\sum_{j}|x1_{ij}-x2_{ij}|^{p}+eps)^{\frac{1}{p}}

 其中,x1_{ij} 和 x2_{ij} 分别是x1_{i}x1_{i}x2_{i} ,的第j个元素。

示例代码

import torch
import torch.nn.functional as F# 定义两个向量组
x1 = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32)
x2 = torch.tensor([[1, 3, 5], [2, 4, 6]], dtype=torch.float32)# 计算成对距离
dist = F.pairwise_distance(x1, x2, p=2)# 输出结果  tensor([2.2361, 2.4495]) 这里,输出的是每一对向量之间的欧几里得距离。print(dist)

cosine_similarity

torch.nn.functional.cosine_similarity 是 PyTorch 中的一个函数,用于计算两个张量之间的余弦相似度。这个函数在机器学习和深度学习领域中非常有用,尤其是在处理文本、图像或任何类型的特征向量时,用于度量它们之间的相似性。

用途

  • 计算两个向量或向量组之间的余弦相似度。
  • 广泛应用于自然语言处理、计算机视觉、推荐系统等领域。

用法

torch.nn.functional.cosine_similarity(x1, x2, dim=1, eps=1e-8)
  • x1, x2: 输入的两个张量,必须能够广播到相同的形状。
  • dim: 计算相似度的维度。
  • eps: 避免除零错误的小数值。

参数

  • x1 (Tensor): 第一个输入张量。
  • x2 (Tensor): 第二个输入张量。
  • dim (int, 可选): 计算相似度的维度,默认为1。
  • eps (float, 可选): 用于避免除零的小数值,默认为1e-8。

数学理论

余弦相似度的计算公式为:

similarity = \frac{x1}{max(||x1||_{2},\varepsilon )\times max(||x2||_{2},\varepsilon )}

 

  • x1⋅x2 表示两个张量的点积。
  • ||x1||_{2} 和 ||x2||_{2}​ 分别是 x1 和 x2 的2范数。
  • ε 是一个小的数值,用来保证除数不为零。

示例代码 

import torch
import torch.nn.functional as F# 随机生成两个张量
input1 = torch.randn(100, 128)
input2 = torch.randn(100, 128)# 计算余弦相似度
output = F.cosine_similarity(input1, input2)# 打印结果
print(output)

输出结果

此代码将计算 input1input2 每行之间的余弦相似度,并输出一个长度为100的张量,每个元素对应于两个输入张量相应行的余弦相似度值。由于输入是随机生成的,输出也会随机变化。

pdist

torch.nn.functional.pdist 是 PyTorch 中的一个函数,它用于计算输入张量中每对行向量之间的 p 范数距离。此函数在统计分析、机器学习和数据科学中非常有用,尤其是在涉及距离度量和空间关系的场景中。

用途

  • 计算给定张量中每对行向量之间的距离。
  • 应用于聚类分析、多维缩放和其他需要距离度量的算法。

用法

torch.nn.functional.pdist(input, p=2)
  • input: 输入张量,其形状为 N×M,其中 N 是行数,M 是列数(特征数)。
  • p: 用于计算的 p 范数,默认为 2,即欧几里得距离。

参数

  • input (Tensor): 形状为 N×M 的输入张量。
  • p (float): p 范数的值,用于计算向量对之间的距离。可取值为 0 到 ∞ 之间的任何实数。

数学理论

对于输入张量的每一对行向量 x_{i}x_{j}pdist 计算它们之间的 p 范数距离:​d(x_{i},x_{j})=(\sum_{k}|x_{ik}-x_{jk}|^{p})^{\frac{1}{p}} 其中,x_{ik}​ 和 x_{jk} 分别是 x_{i} 和x_{j}的第 k 个元素。

示例代码

import torch
import torch.nn.functional as F# 定义输入张量
input_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float32)# 计算 p 范数距离
distances = F.pdist(input_tensor, p=2)# 输出结果 tensor([5.1962, 10.3923, 5.1962]) 这里,输出的是输入张量中每一对行向量之间的欧几里得距离。print(distances)

总结 

本文解析了 PyTorch 中三个关键的距离函数:pairwise_distancecosine_similaritypdist。这些函数在深度学习和机器学习中非常重要,用于计算向量之间的距离和相似度,从而支持各种算法如聚类、k-最近邻、特征相似度度量等。每个函数都有其特定的应用场景和数学原理。pairwise_distance 计算两组向量间的成对欧几里得距离,cosine_similarity 计算两个张量间的余弦相似度,而 pdist 则计算一个张量内各行向量间的 p 范数距离。通过这些函数,我们能有效地分析和处理数据,特别是在高维空间中。


http://www.ppmy.cn/news/1328759.html

相关文章

[SS]语义分割_转置卷积

转置卷积(Transposed Convolution) 抽丝剥茧,带你理解转置卷积(反卷积) 目录 一、概念 1、定义 2、运算步骤 二、常见参数 一、概念 1、定义 转置卷积(Transposed Convolution)&#xf…

【Qt】—— Qt的基本介绍

目录 (一)什么是Qt (二) Qt的发展史 (三)Qt⽀持的平台 (四) Qt版本 (五)Qt的优点 (六)Qt的应⽤场景 (七&#xff09…

QQ数据包解密

Windows版qq数据包格式&#xff1a; android版qq数据包格式&#xff1a; 密钥&#xff1a;16个0 算法&#xff1a;tea_crypt算法 pc版qq 0825数据包解密源码&#xff1a; #include "qq.h" #include "qqcrypt.h" #include <WinSock2.h> #include…

JavaSE核心基础-一维数组-笔记

1.数组概念 相同类型数据的集合&#xff0c;它在内存空间的存储是连续的。数组其实也是一个容器,用来存储固定个数相同类型的数据&#xff0c;数组中存储的数据叫做元素。 2.数组定义 方式1&#xff1a; 数据类型[] 数组名 new 数据类型[数组长度]; 数据类型 数组…

面试题-MySQL如何定位慢查询

慢查询出现的情况就这些&#xff1a;聚合查询、多表查询、表数据量过大查询、深度分页查询。 表象&#xff1a;页面加载过慢、接口压测响应时间过长&#xff08;超过1S&#xff09;。 假如你的业务接口就是比较慢&#xff0c;你怎么知道是SQL的问题呢&#xff1f;就算是SQL的…

卷积和滤波对图像操作的区别

目录 问题引入 解释 卷积 滤波 问题引入 卷积和滤波是很相似的&#xff0c;都是利用了卷积核进行操作 那么他们之间有什么区别呢&#xff1f; 卷积&#xff1a;会影响原图大小 滤波&#xff1a;不会影响原图大小 解释 卷积 我们用这样一段代码来看 import torch.nn as …

反序列化字符串逃逸(上篇)

首先&#xff0c;必须先明白&#xff0c;这个点并不难&#xff0c;我给大家梳理一遍就会明白。 反序列化字符串逃逸就是序列化过程中逃逸出来字符&#xff0c;是不是很简单&#xff0c;哈哈哈&#xff01; 好了&#xff0c;不闹了&#xff0c;其实&#xff1a; 这里你们只要懂…

猎户星空大模型发布:700亿以下参数基座模型中文第一

前言 在人工智能领域&#xff0c;猎户星空大模型的发布无疑是一个里程碑。作为一个具有140亿参数的多语种大模型&#xff0c;猎户星空在一个包含2.5万亿token的多样化数据集上进行了训练&#xff0c;涵盖了中文、英语、日语、韩语等多种语言。在多语言环境下的一系列任务中&am…