08- OpenCV:形态学操作(膨胀与腐蚀 、提取水平与垂直线)

news/2024/11/30 18:48:20/

目录

前言

一、膨胀(Dilation)与 腐蚀(Erosion)

二、形态学操作

1、开操作(Opening)

2、闭操作(Closing)

3、形态学梯度(Morphological Gradient)

4、顶帽 ( top hat)

5、黑帽 ( black hat)

6、相关的API

7、代码演示

三、形态学操作应用-提取水平与垂直线

1、原理方法

2、实现步骤


前言

1、了解图像形态学

图像形态学操作是一种基于图像形状的图像处理方法,常用于图像分割、边缘检测、图像增强等领域。

2、图像形态学主要包括腐蚀(Erosion)、膨胀(Dilation)、开运算(Opening)、闭运算(Closing)等操作。

除了以上基本操作,还有其他形态学操作,如击中击不中变换(Hit-or-Miss Transform)、顶帽运算(Top Hat Transform)和黑帽运算(Black Hat Transform)等。

这些图像形态学操作可以通过OpenCV库中的函数进行实现,例如cv::erodecv::dilatecv::morphologyEx等函数。

3、膨胀与腐蚀是图像处理中最常用得形态学手段。

一、膨胀(Dilation)与 腐蚀(Erosion)

通俗来讲:膨胀是用来处理缺陷问题,腐蚀用来处理毛刺问题。

所以膨胀过后的图像边界看起来更加清晰;腐蚀后的图像去除噪点,边界模糊了。

1、膨胀含义:

将图像中的前景物体进行扩张,通过在图像上滑动一个结构元素,当结构元素与前景物体有重叠时,将该像素置为1(白色)。膨胀操作可以填充物体内部的空洞,同时使物体边界变得更加清晰。

跟卷积操作类似,假设有图像A和结构元素B,结构元素B在A上面移动,其中B定义其中心为锚点,计算B覆盖下A的最大像素值用来替换锚点的像素,其中B作为结构体可以是任意形状。

 2、腐蚀含义:

将图像中的前景物体进行收缩,通过在图像上滑动一个结构元素,当结构元素完全覆盖住前景物体时,将该像素置为0(黑色)。腐蚀操作可以去除小的噪点,同时使物体边界变得模糊。

腐蚀跟膨胀操作的过程类似,唯一不同的是以最小值替换锚点重叠下图像的像素值。

3、相关的API:

(1)getStructuringElement(int shape, Size ksize, Point anchor)  

- 形状 (MORPH_RECT \MORPH_CROSS \MORPH_ELLIPSE)  

- 大小

 - 锚点 默认是Point(-1, -1)意思就是中心像素

(2)dilate(src, dst, kernel)

(3)erode(src, dst, kernel)

4、相关代码演示

#include<opencv2\opencv.hpp>
#include<iostream>int main()
{cv::Mat image = cv::imread("char.jpg", cv::IMREAD_GRAYSCALE);if (image.empty()){std::cout << "Failed to read image" << std::endl;return -1;}// 定义腐蚀和膨胀的核(结构元素)cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));// 腐蚀操作cv::Mat eroded_image;cv::erode(image, eroded_image, kernel);// 膨胀操作cv::Mat dilated_image;cv::dilate(image, dilated_image, kernel);cv::imshow("Original Image", image);cv::imshow("Eroded Image", eroded_image);cv::imshow("Dilated Image", dilated_image);cv::waitKey(0);cv::destroyAllWindows();return 0;
}

效果展示:

二、形态学操作

1、开操作(Opening)

先进行腐蚀操作,再进行膨胀操作。开运算可以消除小的噪点,并保持物体的整体形状不变。

(1)先腐蚀后膨胀

(2)可以去掉小的对象,假设对象是前景色,背景是黑色

2、闭操作(Closing)

先进行膨胀操作,再进行腐蚀操作。闭运算可以填充物体内部的空洞,并保持物体的整体形状不变。

(1)先膨胀后腐蚀(bin2)

(2)可以填充小的洞(fill hole),假设对象是前景色,背景是黑色

3、形态学梯度(Morphological Gradient)

(1)膨胀减去腐蚀

(2)又称为基本梯度(其它还包括-内部梯度、方向梯度)

4、顶帽 ( top hat)

顶帽 是原图像与开操作之间的差值图像

5、黑帽 ( black hat)

黑帽是闭操作图像与源图像的差值图像

6、相关的API

morphologyEx(src, dest, CV_MOP_BLACKHAT, kernel);

// 函数原型:

void morphologyEx (

InputArray src, // 输入图像,可以是单通道灰度图像或多通道彩色图像。

OutputArray dst, // 输出图像,与输入图像具有相同的尺寸和类型。

int op, // 形态学操作类型,可以是以下常量之一:

InputArray kernel, // 结构元素,用于定义形态学操作的形状和大小。可以使用cv::getStructuringElement函数创建不同形状的结构元素。

Point anchor = Point(-1,-1), // 锚点位置,默认为(-1,-1),表示结构元素的中心。

int iterations = 1, // 形态学操作的迭代次数,默认为1。

int borderType = BORDER_CONSTANT, // 边界类型,默认为BORDER_CONSTANT,表示使用常数值进行边界扩展。

const Scalar& borderValue = morphologyDefaultBorderValue() // 边界值,默认为morphologyDefaultBorderValue(),表示使用默认的边界值。

);
 

其中:

  • op:形态学操作类型,可以是以下常量之一:

    • cv::MORPH_ERODE:腐蚀操作

    • cv::MORPH_DILATE:膨胀操作

    • cv::MORPH_OPEN:开运算

    • cv::MORPH_CLOSE:闭运算

    • cv::MORPH_GRADIENT:形态学梯度

    • cv::MORPH_TOPHAT:顶帽运算

    • cv::MORPH_BLACKHAT:黑帽运算

7、代码演示
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace cv;
int main(int argc, char** argv) {Mat src, dst;src = imread("D:/vcprojects/images/bin2.png");if (!src.data) {printf("could not load image...\n");}namedWindow("input image", CV_WINDOW_AUTOSIZE);imshow("input image", src);char output_title[] = "morphology demo";namedWindow(output_title, CV_WINDOW_AUTOSIZE);Mat kernel = getStructuringElement(MORPH_RECT, Size(11, 11), Point(-1, -1));morphologyEx(src, dst, CV_MOP_BLACKHAT, kernel);imshow(output_title, dst);waitKey(0);return 0;
}

效果展示:(黑帽 CV_MOP_BLACKHAT)

三、形态学操作应用-提取水平与垂直线

1、原理方法

图像形态学操作时候,可以通过自定义的结构元素实现结构元素 对输入图像一些对象敏感、另外一些对象不敏感,这样就会让敏 感的对象改变而不敏感的对象保留输出。

通过使用两个最基本的 形态学操作 – 膨胀与腐蚀,使用不同的结构元素实现对输入图像 的操作、得到想要的结果。

(1)膨胀,输出的像素值是结构元素覆盖下输入图像的最大像素值

二值图像与灰度图像上的膨胀操作:

(2)腐蚀,输出的像素值是结构元素覆盖下输入图像的最小像素值

二值图像与灰度图像上的腐蚀操作

(3)结构元素

        1)上述膨胀与腐蚀过程可以使用任意的结构元素

        2)常见的形状:矩形、园、直线、磁盘形状、砖石形状等各种自定义形状。

2、实现步骤

(1)输入图像彩色图像 imread

(2)转换为灰度图像 – cvtColor

(3)转换为二值图像 – adaptiveThreshold

(4)定义结构元素

(5)开操作 (腐蚀+膨胀)提取 水平与垂直线

(1)输入图像彩色图像 imread

(2)转换为灰度图像 – cvtColor

(3)转换为二值图像 – adaptiveThreshold

adaptiveThreshold(

Mat src, // 输入的灰度图像

Mat dest, // 二值图像

double maxValue, // 二值图像最大值

int adaptiveMethod // 自适应方法,只能其中之一 –                 

                                // ADAPTIVE_THRESH_MEAN_C ,APTIVE_THRESH_GAUSSIAN_C

int thresholdType,// 阈值类型

int blockSize, // 块大小

double C // 常量C 可以是正数,0,负数

)

(4)定义结构元素

一个像素宽的水平线 -  水平长度 width/30

一个像素宽的垂直线 – 垂直长度 height/30

(5)开操作 (腐蚀+膨胀)提取 水平与垂直线

后处理

1)bitwise_not(Mat bin, Mat dst)像素取反操作,255 – SrcPixel

2)模糊(blur)

3、代码演示

#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
int main(int argc, char** argv) {Mat src, dst;src = imread("D:/vcprojects/images/chars.png");if (!src.data) {printf("could not load image...\n");return -1;}char INPUT_WIN[] = "input image";char OUTPUT_WIN[] = "result image";namedWindow(INPUT_WIN, CV_WINDOW_AUTOSIZE);imshow(INPUT_WIN, src);Mat gray_src;cvtColor(src, gray_src, CV_BGR2GRAY);imshow("gray image", gray_src);Mat binImg;adaptiveThreshold(~gray_src, binImg, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);imshow("binary image", binImg);// 水平结构元素Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));// 垂直结构元素Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));// 矩形结构Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));Mat temp;erode(binImg, temp, kernel);dilate(temp, dst, kernel);// morphologyEx(binImg, dst, CV_MOP_OPEN, vline);// 背景变色bitwise_not(dst, dst);// 结果更加圆滑些//blur(dst, dst, Size(3, 3), Point(-1, -1));imshow("Final Result", dst);waitKey(0);return 0;
}

效果展示:

(1)水平结构元素:

先腐蚀后膨胀,相当于一开始把垂直的元素擦掉,所以就保留了水平的线。

Mat hline = getStructuringElement(MORPH_RECT, Size(src.cols / 16, 1), Point(-1, -1));

erode(binImg, temp, hline)

dilate(temp, dst, hline);

等同于:

morphologyEx(binImg, dst, CV_MOP_OPEN, hline);

(2)垂直结构元素

先腐蚀后膨胀,相当于一开始把水平的元素擦掉,所以就保留了垂直的线。

Mat vline = getStructuringElement(MORPH_RECT, Size(1, src.rows / 16), Point(-1, -1));

morphologyEx(binImg, dst, CV_MOP_OPEN, vline);

(3)矩形结构

矩形大小的干扰项都去掉。

Mat kernel = getStructuringElement(MORPH_RECT, Size(4, 4), Point(-1, -1));

morphologyEx(binImg, dst, CV_MOP_OPEN, kernel);


http://www.ppmy.cn/news/1327337.html

相关文章

C语言总结十一:自定义类型:结构体、枚举、联合(共用体)

本篇博客详细介绍C语言最后的三种自定义类型&#xff0c;它们分别有着各自的特点和应用场景&#xff0c;重点在于理解这三种自定义类型的声明方式和使用&#xff0c;以及各自的特点&#xff0c;最后重点掌握该章节常考的考点&#xff0c;如&#xff1a;结构体内存对齐问题&…

【DevOps-08-5】目标服务器准备脚本,并基于Harbor的最终部署

一、简要描述 告知目标服务器拉取哪个镜像判断当前服务器是否正在运行容器,停止并删除如果目标服务器已经存在当前镜像,删除当前版本的镜像目标服务器拉取Harbor上的镜像将拉取下来的镜像运行成容器二、准备目标服务器脚本文件 1、在部署的目标服务器准备deploy.sh部署脚本 …

69.使用Go标准库compress/gzip压缩数据存入Redis避免BigKey

文章目录 一&#xff1a;简介二&#xff1a;Go标准库compress/gzip包介绍ConstantsVariablestype Headertype Reader 三&#xff1a;代码实践1、压缩与解压工具包2、单元测试3、为何压缩后还要用base64编码 代码地址&#xff1a; https://gitee.com/lymgoforIT/golang-trick/t…

(蓝桥杯每日一题)平方末尾及补充(常用的字符串函数功能)

能够表示为某个整数的平方的数字称为“平方数 虽然无法立即说出某个数是平方数&#xff0c;但经常可以断定某个数不是平方数。因为平方数的末位只可能是:0,1,4,5,6,9 这 6 个数字中的某个。所以&#xff0c;4325435332 必然不是平方数。 如果给你一个 2 位或 2 位以上的数字&am…

寻找多数元素

【问题描述】给定一个大小为 n 的数组 nums &#xff0c;返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。题目保证一定存在多数元素。 【输入形式】输入的第1行中有1个数字n&#xff0c;表示数组的长度&#xff1b;第2行中有n个数字&#xff0c;表…

竞赛保研 机器视觉人体跌倒检测系统 - opencv python

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 机器视觉人体跌倒检测系统 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&…

【linux驱动】用户空间程序与内核模块交互-- IOCTL和Netlink

创建自定义的IOCTL&#xff08;输入/输出控制&#xff09;或Netlink命令以便用户空间程序与内核模块交互涉及几个步骤。这里将分别介绍这两种方法。 一、IOCTL 方法 1. 定义IOCTL命令 在内核模块中&#xff0c;需要使用宏定义你的IOCTL命令。通常情况下&#xff0c;IOCTL命令…

基于springboot+vue的在线拍卖系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…