Hardware-Aware-Transformers开源项目笔记

news/2024/11/28 7:28:49/

文章目录

    • Hardware-Aware-Transformers开源项目笔记
      • 开源项目
      • 背景知识
        • nas
        • 进化算法
        • 进化算法代码示例
      • 开源项目Evolutionary Search
        • 1 生成延迟的数据集
        • 2 训练延迟预测器
        • 3 使延时约束运行搜索算法
        • 4. 训练搜索得到的subTransformer
        • 5. 根据重训练后的submodel 得到BLEU精度值
      • 代码结构分析

Hardware-Aware-Transformers开源项目笔记

开源项目

本文是基于论文《HAT: Hardware-Aware Transformers for Efficient Natural Language Processing》同步开源的项目整理的,如需更详细的内容,请移步至项目https://github.com/mit-han-lab/hardware-aware-transformers

背景知识

nas

Neural Architecture Search,神经网络结构搜索。

  1. 定义搜索空间;

  2. 执行搜索策略采样网络

    基于强化学习的方法

    基于进化算法的方法

    ​ 种群:针对当前问题的候选解集合

    ​ 母种群

    ​ 重组(Crossover):交叉重组,两父代个体随机匹配并将部分结构加以替换重组形成新个体。

    ​ 突变种群(Mutation):变异,以一定的概率对子代进行变异,引入新的基因。

    ​ 突变率

    基于梯度的方法

  3. 对采样的网络进行性能评估

进化算法

对网络结构进行编码,维护结构的集合(种群),

从种群中挑选结构训练并评估,留下高性能网络而淘汰低性能网络。

接下来通过预设定的结构变异操作形成新的候选,通过训练和评估后加入种群中,

迭代该过程直到满足终止条件(如达到最大迭代次数或变异后的网络性能不再上升)

进化算法代码示例

1.问题表示;

2.评估函数;

3.种群;

4.父代选择机制;

5.变异操作算子,包括重组和突变;

6.生存选择机制。

将loss作为优化目标。

搜索算法如下所示:

注意搜索子网络的过程中没有训练

进化搜索参数

种群大小 125,母种群大小 25,重组 (Crossover) 种群大小 50,突变 (Mutation) 种群大小 50,0.3 突变几率。

每个硬件提供了2000个样本,按照8:1:1的方法划分数据集, 训练了一个三层的MLPLatency Predictor只用在搜索过程中,在最后实验的时候还是用的真实测得的Latency

开源项目Evolutionary Search

https://github.com/mit-han-lab/hardware-aware-transformers

训练好的SuperTransformer中进行进化搜索,并在搜索循环中增加硬件延迟约束。我们训练一个延迟预测器,以快速获得准确的延迟反馈。

1 生成延迟的数据集
python latency_dataset.py --configs=configs/[task_name]/latency_dataset/[hardware_name].yml
# for example
python latency_dataset.py --configs=configs/wmt14.en-de/latency_dataset/cpu_raspberrypi.yml

hardware_name 可以是 cpu_raspberrypi,cpu_xeon and gpu_titanxp.

--configs 文件为设计空间,在其中对模型进行采样以获得(model_architecture, real_latency)数据对。

--configs 文件示例如下

lat-dataset-path: ./latency_dataset/wmt14ende_gpu_titanxp.csv
lat-dataset-size: 2000
latgpu: True
latiter: 20 #循环20次获取硬件推理性能
latsilent: True
# below is the configs for the data point sampling space for the latency predictor# model
arch: transformersuper_wmt_en_de
share-all-embeddings: True
max-tokens: 4096
data: data/binary/wmt16_en_de# SuperTransformer configs
encoder-embed-dim: 640
decoder-embed-dim: 640
encoder-ffn-embed-dim: 3072
decoder-ffn-embed-dim: 3072
encoder-layers: 6
decoder-layers: 6
encoder-attention-heads: 8
decoder-attention-heads: 8qkv-dim: 512
# SubTransformers search space
encoder-embed-choice: [640, 512]
decoder-embed-choice: [640, 512]encoder-ffn-embed-dim-choice: [3072, 2048, 1024, 512]
decoder-ffn-embed-dim-choice: [3072, 2048, 1024, 512]encoder-layer-num-choice: [6]
decoder-layer-num-choice: [6, 5, 4, 3, 2, 1]encoder-self-attention-heads-choice: [8, 4, 2]
decoder-self-attention-heads-choice: [8, 4, 2]
decoder-ende-attention-heads-choice: [8, 4, 2]# for arbitrary encoder decoder attention. -1 means attending to last one encoder layer
# 1 means last two encoder layers, 2 means last three encoder layers
decoder-arbitrary-ende-attn-choice: [-1, 1, 2]

latency_dataset目录中有该数据集示例,示例如下
在这里插入图片描述

wmt14ende_gpu_titanxp_all.csv中 的数据内容如下,共2000条数据

encoder_embed_dim, #640
encoder_layer_num, #6
encoder_ffn_embed_dim_avg, #1962.666
encoder_self_attention_heads_avg, # 6.0
decoder_embed_dim, #512
decoder_layer_num,  #4
decoder_ffn_embed_dim_avg, #1920.0
decoder_self_attention_heads_avg, #2.5
decoder_ende_attention_heads_avg, # 5.5
decoder_arbitrary_ende_attn_avg, #1.5latency_mean_encoder, # 5.495
latency_mean_decoder,# 124.549 训练时使用时间为(latency_mean_encoder+latency_mean_decoder)/lat-norm
latency_std_encoder, #0.0519
latency_std_decoder #0.4439#后4个参数来源np.mean(encoder_latencies), np.mean(decoder_latencies), np.std(encoder_latencies), np.std(decoder_latencies)
2 训练延迟预测器

使用上述收集的数据集训练一个预测器

python latency_predictor.py --configs=configs/[task_name]/latency_predictor/[hardware_name].yml
# for example
python latency_predictor.py --configs=configs/wmt14.en-de/latency_predictor/cpu_raspberrypi.yml --ckpt-path latency_dataset/ckpts/save.pt

–ckpt-path 保存预测器模型输出路径

--configs 文件中包含 预测器模型的结构和训练设置,内容示例如下:

lat-dataset-path: ./latency_dataset/wmt14ende_gpu_titanxp_all.csv #延时数据集
feature-norm: [640, 6, 2048, 6, 640, 6, 2048, 6, 6, 2]
lat-norm: 200 #训练时数据除以200,预测后再乘回来 
feature-dim: 10
hidden-dim: 400
hidden-layer-num: 3
ckpt-path: ./latency_dataset/predictors/wmt14ende_gpu_titanxp.pt
train-steps: 5000
bsz: 128
lr: 1e-5

latency_dataset/predictors 目录中我们提供了预训练的预测器;

延时预测器输入与1中数据集格式一致)是:

1. Encoder layer number, 
2. Encoder Embedding dim,
3. Encoder hidden dim,
4. Encoder average self-attention heads,5. Decoder layer number,
6. Decoder Embedding dim,
7. Decoder hidden dim8. Decoder average self-attention heads,
9. average encoder-decoder attention heads,
10. average number of encoder: layers each decoder layer attends (每个decoder层关注的encoder层数量的均值)。

输出是:Predicted Latency。

运行截图示例如下
在这里插入图片描述
在这里插入图片描述

3 使延时约束运行搜索算法
python evo_search.py --configs=[supertransformer_config_file].yml --evo-configs=[evo_settings].yml
# for example
python evo_search.py --configs=configs/wmt14.en-de/supertransformer/space0.yml --evo-configs=configs/wmt14.en-de/evo_search/wmt14ende_titanxp.yml
  • –write-config-path是输出路径,保存搜索的subtransformer 结构的结果路径;

  • –configs 是SuperTranformer训练配置文件,包括搜索空间配置等,示例如下

# model
arch: transformersuper_wmt_en_de
share-all-embeddings: True
max-tokens: 4096
data: data/binary/wmt16_en_de #数据集# training settings
optimizer: adam
adam-betas: (0.9, 0.98)
clip-norm: 0.0
weight-decay: 0.0
dropout: 0.3
attention-dropout: 0.1
criterion: label_smoothed_cross_entropy
label-smoothing: 0.1
ddp-backend: no_c10d
fp16: True
# warmup from warmup-init-lr to max-lr (warmup-updates steps); then cosine anneal to lr (max-update - warmup-updates steps)
update-freq: 16
max-update: 40000
warmup-updates: 10000
lr-scheduler: cosine
warmup-init-lr: 1e-7
max-lr: 0.001
lr: 1e-7
lr-shrink: 1
# logging
keep-last-epochs: 20
save-interval: 10
validate-interval: 10
# SuperTransformer configs
encoder-embed-dim: 640
decoder-embed-dim: 640
encoder-ffn-embed-dim: 3072
decoder-ffn-embed-dim: 3072
encoder-layers: 6
decoder-layers: 6
encoder-attention-heads: 8
decoder-attention-heads: 8
qkv-dim: 512
# SubTransformers search space
encoder-embed-choice: [640, 512]
decoder-embed-choice: [640, 512]
encoder-ffn-embed-dim-choice: [3072, 2048, 1024]
decoder-ffn-embed-dim-choice: [3072, 2048, 1024]
encoder-layer-num-choice: [6]
decoder-layer-num-choice: [6, 5, 4, 3, 2, 1]
encoder-self-attention-heads-choice: [8, 4]
decoder-self-attention-heads-choice: [8, 4]
decoder-ende-attention-heads-choice: [8, 4]
# for arbitrary encoder decoder attention. -1 means attending to last one encoder layer
# 1 means last two encoder layers, 2 means last three encoder layers
decoder-arbitrary-ende-attn-choice: [-1, 1, 2]

—evo-configs 包含进化搜索的设置 ,示例如下

#进化算法设置
evo-iter: 30
population-size: 125
parent-size: 25
mutation-size: 50
crossover-size: 50
mutation-prob: 0.3# 延时预测器模型路径 
ckpt-path: ./latency_dataset/predictors/wmt14ende_gpu_titanxp.pt 
# feature-norm should match with that when train the latency predictor
feature-norm: [640, 6, 2048, 6, 640, 6, 2048, 6, 6, 2]
# lat-norm should match with that when train the latency predictor
lat-norm: 200
# supertransformer 权重路径
restore-file: ./downloaded_models/HAT_wmt14ende_super_space0.pt# subtransformer配置路径
write-config-path: configs/wmt14.en-de/subtransformer/wmt14ende_titanxp@200ms.yml
# latency constraint
latency-constraint: 200

运行结构图示

在这里插入图片描述

4. 训练搜索得到的subTransformer

最后需要从头训练 SubTransformer

python train.py --configs=[subtransformer_architecture].yml --sub-configs=configs/[task_name]/subtransformer/common.yml
# for example
python train.py --configs=configs/wmt14.en-de/subtransformer/wmt14ende_titanxp@200ms.yml --sub-configs=configs/wmt14.en-de/subtransformer/common.yml

参数解释:

–configs 是步骤3中的 --write-config-path路径

–sub-configs 包含SubTransformer的训练设置

在这里插入图片描述

5. 根据重训练后的submodel 得到BLEU精度值

在这里插入图片描述

代码结构分析

latency_dataset.py

encoder 输入: src_tokens [1, 30]

decoder 输入

​ [5, 1] , 原因是num_beams=5

​ [5, 2]

​ [5, 3]

​ [5, 4]

​ [5, 5]

​ …

​ [5, 30]


http://www.ppmy.cn/news/1324173.html

相关文章

何时应该使用forEach,何时应该使用map

引言 在JavaScript编程中,循环是不可或缺的工具,它们允许我们有效地处理和操作数组中的元素。然而,JavaScript提供了多种不同类型的循环方法,其中包括forEach和map。这两者可能看起来很相似,但它们在使用和用途上存在…

Ubuntu平台上C语言利用matio库读取mat文件

一、安装matio库 matio库是一个用于读取和写入MAT文件(MATLAB数据格式)的开源C库。它提供了一组函数和工具,使得在C和C程序中可以方便地读取和写入MAT文件中的数据。MAT文件是MATLAB软件中常用的文件格式,用于存储多维数值数组、…

无法解析服务器的名称或地址/Wsl/0x80072eff/win10 WSL2问题解决Wsl 0x800701bc/Wsl:0x80041002

无法解析服务器的名称或地址 和 Wsl/0x80072eff 1.连VPN,推荐的VPN如下。(如一直显示无法连接,则推荐使用VPN) Anycast加速器 (any4ga.com) 优点:无限GB 缺点:较贵,通过银行卡充值9折后的价格是每月45元左右 …

C++笔试题(一)

1. 已知int array[10] {1,2,3},仅将数组名作为实参传递给函数,下列说法正确的是(D ) A. 数组会退化为指针 B. 实际传递给形参的是数组的第一个元素值 首地址 C. 实际传递给形参的是数组中全部元素的值 首地址 D. 可以在函数中获得数组元素的个数 2、下…

Spring MVC学习之——RequestMapping注解

RequestMapping注解 作用 用于建立请求URL和处理请求方法之间的对应关系。 属性 value:指定请求的实际地址,可以是一个字符串或者一个字符串列表。 value可以不写,直接在括号中写,默认就是value值 RequestMapping(value“/hel…

Dubbo分层设计之Serialize层

前言 Dubbo 框架采用 微内核 插件 的基本设计原则,自身功能几乎也都通过 SPI 扩展点实现,可以方便地被用户自由扩展和更换。 Dubbo 框架采用分层设计,自上而下共分为十层,各层均为单向依赖,每一层都可以剥离上层被复…

css3 纯代码案例

css3 纯代码案例 前言渐变之美1.1 纯CSS3实现的渐变背景1.2 使用多重颜色和方向打造丰富渐变效果1.3 渐变色停留动画的巧妙运用 纯CSS图形绘制2.1 使用border属性制作三角形、梯形等形状伪类箭头图标2.2 利用transform创建旋转、缩放的图形 浮动的阴影敲代码css准备reset 样式复…

LaWGPT安装和使用教程的复现版本【细节满满】

文章目录 前言一、下载和部署1.1 下载1.2 环境安装1.3 模型推理 总结 前言 LaWGPT 是一系列基于中文法律知识的开源大语言模型。该系列模型在通用中文基座模型(如 Chinese-LLaMA、ChatGLM等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练&am…