YOLOv8模型yaml结构图理解(逐层分析)

news/2024/11/22 21:38:35/

前言


YOLO-V8(官网地址):https://github.com/ultralytics/ultralytics


一、yolov8配置yaml文件

YOLOv8的配置文件定义了模型的关键参数和结构,包括类别数、模型尺寸、骨架(backbone)和头部(head)结构。这些配置决定了模型的性能和复杂性。

下面是yolov8模型的配置文件,以及每个参数的详细说明

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # 类别数目,nc代表"number of classes",即模型用于检测的对象类别总数。
scales: # 模型复合缩放常数,例如 'model=yolov8n.yaml' 将调用带有 'n' 缩放的 yolov8.yaml# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n概览:225层, 3157200参数, 3157184梯度, 8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s概览:225层, 11166560参数, 11166544梯度, 28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m概览:295层, 25902640参数, 25902624梯度, 79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l概览:365层, 43691520参数, 43691504梯度, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x概览:365层, 68229648参数, 68229632梯度, 258.5 GFLOPs# YOLOv8.0n backbone 骨干层
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2 第0层,-1代表将上层的输入作为本层的输入。第0层的输入是640*640*3的图像。Conv代表卷积层,相应的参数:64代表输出通道数,3代表卷积核大小k,2代表stride步长。- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4 第1层,本层和上一层是一样的操作(128代表输出通道数,3代表卷积核大小k,2代表stride步长)- [-1, 3, C2f, [128, True]] # 第2层,本层是C2f模块,3代表本层重复3次。128代表输出通道数,True表示Bottleneck有shortcut。- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8 第3层,进行卷积操作(256代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为80*80*256(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/8。- [-1, 6, C2f, [256, True]] # 第4层,本层是C2f模块,可以参考第2层的讲解。6代表本层重复6次。256代表输出通道数,True表示Bottleneck有shortcut。经过这层之后,特征图尺寸依旧是80*80*256。- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16 第5层,进行卷积操作(512代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为40*40*512(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/16。- [-1, 6, C2f, [512, True]] # 第6层,本层是C2f模块,可以参考第2层的讲解。6代表本层重复6次。512代表输出通道数,True表示Bottleneck有shortcut。经过这层之后,特征图尺寸依旧是40*40*512。- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32 第7层,进行卷积操作(1024代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为20*20*1024(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/32。- [-1, 3, C2f, [1024, True]] #第8层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。1024代表输出通道数,True表示Bottleneck有shortcut。经过这层之后,特征图尺寸依旧是20*20*1024。- [-1, 1, SPPF, [1024, 5]]  # 9 第9层,本层是快速空间金字塔池化层(SPPF)。1024代表输出通道数,5代表池化核大小k。结合模块结构图和代码可以看出,最后concat得到的特征图尺寸是20*20*(512*4),经过一次Conv得到20*20*1024。# YOLOv8.0n head 头部层
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 第10层,本层是上采样层。-1代表将上层的输出作为本层的输入。None代表上采样的size(输出尺寸)不指定。2代表scale_factor=2,表示输出的尺寸是输入尺寸的2倍。nearest代表使用的上采样算法为最近邻插值算法。经过这层之后,特征图的长和宽变成原来的两倍,通道数不变,所以最终尺寸为40*40*1024。- [[-1, 6], 1, Concat, [1]]  # cat backbone P4 第11层,本层是concat层,[-1, 6]代表将上层和第6层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是40*40*1024,第6层的输出是40*40*512,最终本层的输出尺寸为40*40*1536。- [-1, 3, C2f, [512]]  # 12 第12层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。512代表输出通道数。与Backbone中C2f不同的是,此处的C2f的bottleneck模块的shortcut=False。- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 第13层,本层也是上采样层(参考第10层)。经过这层之后,特征图的长和宽变成原来的两倍,通道数不变,所以最终尺寸为80*80*512。- [[-1, 4], 1, Concat, [1]]  # cat backbone P3 第14层,本层是concat层,[-1, 4]代表将上层和第4层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是80*80*512,第6层的输出是80*80*256,最终本层的输出尺寸为80*80*768。- [-1, 3, C2f, [256]]  # 15 (P3/8-small) 第15层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。256代表输出通道数。经过这层之后,特征图尺寸变为80*80*256,特征图的长宽已经变成输入图像的1/8。- [-1, 1, Conv, [256, 3, 2]] # 第16层,进行卷积操作(256代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为40*40*256(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样)。- [[-1, 12], 1, Concat, [1]]  # cat head P4 第17层,本层是concat层,[-1, 12]代表将上层和第12层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是40*40*256,第12层的输出是40*40*512,最终本层的输出尺寸为40*40*768。- [-1, 3, C2f, [512]]  # 18 (P4/16-medium) 第18层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。512代表输出通道数。经过这层之后,特征图尺寸变为40*40*512,特征图的长宽已经变成输入图像的1/16。- [-1, 1, Conv, [512, 3, 2]] # 第19层,进行卷积操作(512代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为20*20*512(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样)。- [[-1, 9], 1, Concat, [1]]  # cat head P5 第20层,本层是concat层,[-1, 9]代表将上层和第9层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是20*20*512,第9层的输出是20*20*1024,最终本层的输出尺寸为20*20*1536。- [-1, 3, C2f, [1024]]  # 21 (P5/32-large) 第21层,本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。1024代表输出通道数。经过这层之后,特征图尺寸变为20*20*1024,特征图的长宽已经变成输入图像的1/32。- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5) 第20层,本层是Detect层,[15, 18, 21]代表将第15、18、21层的输出(分别是80*80*256、40*40*512、20*20*1024)作为本层的输入。nc是数据集的类别数。

在yolov8.yaml配置文件中,整个yaml文件主要分为4个参数,每个关键词都扮演着特定的角色,下面是对这些关键词及其含义的详细解释:

1. nc

  • 含义: nc代表"number of classes",即模型用于检测的对象类别总数。
  • 示例中的值: 80,表示该模型配置用于检测80种不同的对象。由于默认使用COCO数据集,这里nc=80

2. scales

  • 含义: scales用于定义模型的不同尺寸和复杂度,它包含一系列缩放参数。
  • 子参数: n, s, m, l, x表示不同的模型尺寸,每个尺寸都有对应的depth(深度)、width(宽度)和max_channels(最大通道数)。
    • depth: 表示深度因子,用来控制一些特定模块的数量的,模块数量多网络深度就深;
    • width: 表示宽度因子,用来控制整个网络结构的通道数量,通道数量越多,网络就看上去更胖更宽;
    • max_channels: 最大通道数,为了动态地调整网络的复杂性。在 YOLO 的早期版本中,网络中的每个层都是固定的,这意味着每个层的通道数也是固定的。但在 YOLOv8 中,为了增加网络的灵活性并使其能够更好地适应不同的任务和数据集,引入了 max_channels 参数。

3. backbone

主干网络是模型的基础,负责从输入图像中提取特征。这些特征是后续网络层进行目标检测的基础。在YOLOv8中,主干网络采用了类似于CSPDarknet的结构。

  • 含义: backbone部分定义了模型的基础架构,即用于特征提取的网络结构。
  • 关键组成:
    • [from, repeats, module, args]表示层的来源、重复次数、模块类型和参数。
      • from:表示该模块的输入来源,如果为-1则表示来自于上一个模块中,如果为其他具体的值则表示从特定的模块中得到输入信息;
      • repeats: 这个参数用于指定一个模块或层应该重复的次数。例如,如果你想让某个卷积层重复三次,你可以使用 repeats=3。
      • module: 这个参数用于指定要添加的模块或层的类型。例如,如果你想添加一个卷积层,你可以使用 conv 作为模块类型。
      • args: 这个参数用于传递给模块或层的特定参数。例如,如果你想指定卷积层的滤波器数量,你可以使用 args=[filters]。
    • Conv表示卷积层,其参数指定了输出通道数、卷积核大小和步长。
    • C2f可能是一个特定于YOLOv8的自定义模块。
    • SPPF是空间金字塔池化层,用于在多个尺度上聚合特征。

4. head

  • 含义: head部分定义了模型的检测头,即用于最终目标检测的网络结构。
  • 关键组成:
    • nn.Upsample表示上采样层,用于放大特征图。
    • Concat表示连接层,用于合并来自不同层的特征。
    • C2f层再次出现,可能用于进一步处理合并后的特征。
    • Detect层是最终的检测层,负责输出检测结果。

二、模型结构图

这张图是 YOLOv8(You Only Look Once version 8)目标检测模型的结构图。它展示了模型的三个主要部分:Backbone(主干网络)、Neck(颈部网络)和 Head(头部网络),以及它们的子模块和连接方式。

模型结构解释

Backbone(主干网络)

   主干网络是模型的基础,负责从输入图像中提取特征。这些特征是后续网络层进行目标检测的基础。在YOLOv8中,主干网络采用了类似于CSPDarknet的结构,

Head(头部网络)

     头部网络是目标检测模型的决策部分,负责产生最终的检测结果。

Neck(颈部网络)

   颈部网络位于主干网络和头部网络之间,它的作用是进行特征融合和增强。

其他细节

  • ConvModule:包含卷积层、BN(批量归一化)和激活函数(如SiLU),用于提取特征。
  • DarknetBottleneck:通过residual connections增加网络深度,同时保持效率。
  • CSP Layer:CSP结构的变体,通过部分连接来提高模型的训练效率。
  • Concat:特征图拼接,用于合并不同层的特征。
  • Upsample:上采样操作,增加特征图的空间分辨率。

IoU (交并比)

IoU是评估目标检测模型性能中一个非常重要的指标。它衡量的是预测边界框和真实边界框之间的重叠程度。IoU的计算方式如下:

I o U = A r e a o f O v e r l a p A r e a o f U n i o n IoU=\frac{Area\ of\ Overlap}{Area\ of\ Union} IoU=Area of UnionArea of Overlap

其中,Area of Overlap是预测边界框和真实边界框重叠的区域面积,Area of Union是两个边界框覆盖的总面积。

  • 优点:IoU提供了一个明确的指标来衡量位置预测的准确性。
  • 作用:它被广泛用于训练阶段来优化模型(作为损失函数的一部分),以及评估阶段来比较不同模型或同一模型在不同参数下的性能。

Bbox Loss

Bbox Loss用于计算预测边界框和真实边界框之间的差异。均方误差(MSE)是一个常用的损失函数,其计算公式如下:

L o s s b b o x = ∑ i = 1 N ( x i − x ^ i ) 2 Loss_{bbox}=\sum_{i=1}^{N}(x_{i}-\hat{x}_{i})^{2} Lossbbox=i=1N(xix^i)2
其中,x_{i} 是真实边界框的坐标,而 \hat{x}_{i} 是预测边界框的坐标。该损失计算预测与实际坐标之间的差异的平方和。

  • 优点:MSE是一个很好的损失函数,因为它在较大误差时赋予更高的惩罚,这有助于模型快速修正大的预测错误。
  • 作用:作为优化目标,引导模型在训练过程中减少预测框和真实框之间的差距。

Cls Loss(分类损失)

Cls Loss用于衡量模型预测的类别分布与真实标签之间的差异。交叉熵损失函数是分类任务中常用的一种损失函数,其公式为:

L o s s c l s = − ∑ c = 1 M y o , c l o g ( p o , c ) Loss_{cls}=-\sum_{c=1}^{M}y_{o,c}log(p_{o},c) Losscls=c=1Myo,clog(po,c)
这里,y_{o,c} 是一个指示器,如果样本o属于类别c,则为1,反之为0。而p_{o,c}是模型预测样本o属于类别c的概率。

  • 优点:交叉熵损失对于错误预测给出了很大的惩罚,尤其是在预测的概率和实际标签相差很大时。
  • 作用:帮助模型在多分类问题中优化其预测,使预测概率分布尽可能接近真实的标签分布。

每一个损失函数都专注于模型的一个特定方面,确保模型能够从多个维度进行学习和优化。在训练时,这些损失通常被组合起来形成一个综合的优化目标,以便模型能够同时提高其在定位和分类任务上的性能。

模型结构图

来自RangeKing(github)的这个模型结构图相信很多人看过,但是他是怎么画出来的呢, 我用一个简化的图来演示

在这里插入图片描述
在这张图上我标注了1-22个layer层,对应下面这张结构输出图的最左侧一列

在这里插入图片描述

三、逐层分析

从输出的模型结构信息,结合画的结构图,yaml配置文件,逐层分析如下:

Backbone部分:

# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9

# [from, repeats, module, args]

  • from: 本层的来源,也就是输入。-1表示将上层的输出作为本层的输入。第11层【-1,6】表示将第6层的输出作为本层的输入。如上图的6(c2f)→11(concat),其他层也类似。
  • repeats:本层的重复次数。
  • module:本层的名称。
  • args:本层的参数。

第0层: - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2

-1代表将上层的输入作为本层的输入。第0层的输入是640*640*3的图像。

Conv代表卷积层,相应的参数:64代表输出通道数,3代表卷积核大小k,2代表stride步长。

这里给出Conv的代码供参考


def autopad(k, p=None, d=1):  # kernel, padding, dilation# Pad to 'same' shape outputsif d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):return self.act(self.conv(x))

可以从代码中看出,当k=3时,p=1

所以第0层的卷积f_in=640, c_out=64, k=3, s=2, p=1

输出的特征图大小计算公式:f_out = ((f_in - k + 2*p ) / s ) 向下取整 +1

计算出卷积后的特征图大小:640-3+2=639,639/2向下取整=319,319+1=320

所以经过此层,输出的特征图尺寸为320*320*64,长宽为初始图片的1/2。

第1层: - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4

本层和上一层是一样的操作(128代表输出通道数,3代表卷积核大小k,2代表stride步长),卷积后的特征图尺寸为160*160*128(320-3+2=319,319/2向下取整=159,159+1=160),长宽为初始图片的1/4。

第2层: - [-1, 3, C2f, [128, True]]

本层是C2f模块,3代表本层重复3次。128代表输出通道数,True表示Bottleneck有shortcut。

经过这层之后,特征图尺寸依旧是160*160*128。

结合RangeKing绘制的YOLOv8网络结构图理解:
image.png

image.png

先介绍一下YOLOv5使用的C3模块(往下滑有结构图),以下是C3模块的代码:

class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

假设C3的输入是h*w*cin,输出通道数是cout,则c1=cin,c2=cout,c_=0.5*cout。

1*1卷积不改变特征图大小

cv1是Conv(cin, 0.5*cout, 1, 1) (k=1,s=1)下图最左边的CBS模块 //输出为h*w*0.5cout

cv2是Conv(cin, 0.5*cout, 1, 1)(k=1,s=1)下图中间的CBS模块 //输出为h*w*0.5cout

cv3是Conv(cout, cout, 1) (k=1)下图最右边的CBS模块 // 输出为 h*w*cout

n是bottleneck的个数 ,m是接上了n个Bottleneck模块

整个过程就是cv1接上了n个bottleneck模块再与cv2进行concat操作,最后在进行一次cv3的Conv。

所以经过了C3模块,输出特征图尺寸是h*w*cout。

image.png

对比C3模块和C2f模块,可以看到C2f获得了更多的梯度流信息(参考了YOLOv7的ELAN模块的思想) 。

image.png

假设输入C2f模块的特征图尺寸是h*w*cin,输出通道数是cout,则c1=cin,c2=cout,c=0.5*cout。

cv1是Conv(cin, cout, 1, 1) (k=1,s=1)上图C2f模块中最左边的CBS模块 //输出为h*w*cout

cv2是Conv((2+n)*0.5*cout, cout, 1) (k=1,s=1)上图C2f模块中最右边的CBS模块 //输出为h*w*cout

n是bottleneck的个数 ,m是接上了n个Bottleneck模块。

Bottlenectk输入和输出通道数都是c=0.5*cout。

在forward方法里,先将输入的特征图x进行cv1的Conv(cin, cout, 1, 1) (k=1,s=1)操作,然后使用chunk将其分成2块。

所以y得到的是被分成2块的特征图的list。

torch.chunk:将tensor分成很多个块,在不同维度上切分。
torch.chunk(tensor,chunk数,维度)

y[-1]表示被切分的最后一块,也就是第二块。

m(y[-1]) for m in self.m就是把第二块放进n个连续的Bottleneck里。

y.extend(经过n个连续的Bottleneck的第二块),就是把y列表扩充了,把"经过n个连续的Bottleneck的第二块"加到列表尾部,y变成2+n块。

torch.cat(y, 1) 将y按第一维度拼接在一起。

最后对拼接好的特征图进行cv2的Conv((2+n)*0.5*cout, cout, 1) (k=1,s=1)操作。

以上就是C2f模块的全过程,输出的特征图尺寸为h*w*cout。

class C2f(nn.Module):# CSP Bottleneck with 2 convolutionsdef __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, groups, kernels, expandsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

第3层: - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8

进行卷积操作(256代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为80*80*256(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/8。

第4层: - [-1, 6, C2f, [256, True]]

本层是C2f模块,可以参考第2层的讲解。6代表本层重复6次。256代表输出通道数,True表示Bottleneck有shortcut。

经过这层之后,特征图尺寸依旧是80*80*256。

第5层: - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16

进行卷积操作(512代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为40*40*512(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/16。

第6层: - [-1, 6, C2f, [512, True]]

本层是C2f模块,可以参考第2层的讲解。6代表本层重复6次。512代表输出通道数,True表示Bottleneck有shortcut。

经过这层之后,特征图尺寸依旧是40*40*512。

第7层: - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32

进行卷积操作(1024代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为20*20*1024(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样),特征图的长宽已经变成输入图像的1/32。

第8层: - [-1, 3, C2f, [1024, True]]

本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。1024代表输出通道数,True表示Bottleneck有shortcut。

经过这层之后,特征图尺寸依旧是20*20*1024。

第9层: - [-1, 1, SPPF, [1024, 5]] # 9

class SPPF(nn.Module):# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocherdef __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)def forward(self, x):x = self.cv1(x)y1 = self.m(x)y2 = self.m(y1)return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

本层是快速空间金字塔池化层(SPPF)。1024代表输出通道数,5代表池化核大小k。结合模块结构图和代码可以看出,最后concat得到的特征图尺寸是20*20*(512*4),经过一次Conv得到20*20*1024。

Head部分:

# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第10层: - [-1, 1, nn.Upsample, [None, 2, ‘nearest’]]

torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)

本层是上采样层。-1代表将上层的输出作为本层的输入。None代表上采样的size(输出尺寸)不指定。2代表scale_factor=2,表示输出的尺寸是输入尺寸的2倍。nearest代表使用的上采样算法为最近邻插值算法。经过这层之后,特征图的长和宽变成原来的两倍,通道数不变,所以最终尺寸为40*40*1024。

第11层: - [[-1, 6], 1, Concat, [1]] # cat backbone P4

本层是concat层,[-1, 6]代表将上层和第6层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是40*40*1024,第6层的输出是40*40*512,最终本层的输出尺寸为40*40*1536。

第12层: - [-1, 3, C2f, [512]] # 12

本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。512代表输出通道数。与Backbone中C2f不同的是,此处的C2f的bottleneck模块的shortcut=False

经过这层之后,特征图尺寸变为40*40*512。

第13层: - [-1, 1, nn.Upsample, [None, 2, ‘nearest’]]

本层也是上采样层(参考第10层)。经过这层之后,特征图的长和宽变成原来的两倍,通道数不变,所以最终尺寸为80*80*512。

第14层: - [[-1, 4], 1, Concat, [1]] # cat backbone P3

本层是concat层,[-1, 4]代表将上层和第4层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是80*80*512,第6层的输出是80*80*256,最终本层的输出尺寸为80*80*768。

第15层: - [-1, 3, C2f, [256]] # 15 (P3/8-small)

本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。256代表输出通道数。

经过这层之后,特征图尺寸变为80*80*256,特征图的长宽已经变成输入图像的1/8。

第16层: - [-1, 1, Conv, [256, 3, 2]]

进行卷积操作(256代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为40*40*256(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样)。

第17层: - [[-1, 12], 1, Concat, [1]] # cat head P4

本层是concat层,[-1, 12]代表将上层和第12层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是40*40*256,第12层的输出是40*40*512,最终本层的输出尺寸为40*40*768。

第18层: - [-1, 3, C2f, [512]] # 18 (P4/16-medium)

本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。512代表输出通道数。

经过这层之后,特征图尺寸变为40*40*512,特征图的长宽已经变成输入图像的1/16。

第19层: - [-1, 1, Conv, [512, 3, 2]]

进行卷积操作(512代表输出通道数,3代表卷积核大小k,2代表stride步长),输出特征图尺寸为20*20*512(卷积的参数都没变,所以都是长宽变成原来的1/2,和之前一样)。

第20层: - [[-1, 9], 1, Concat, [1]] # cat head P5

本层是concat层,[-1, 9]代表将上层和第9层的输出作为本层的输入。[1]代表concat拼接的维度是1。从上面的分析可知,上层的输出尺寸是20*20*512,第9层的输出是20*20*1024,最终本层的输出尺寸为20*20*1536。

第21层: - [-1, 3, C2f, [1024]] # 21 (P5/32-large)

本层是C2f模块,可以参考第2层的讲解。3代表本层重复3次。1024代表输出通道数。

经过这层之后,特征图尺寸变为20*20*1024,特征图的长宽已经变成输入图像的1/32。

第22层: - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

本层是Detect层,[15, 18, 21]代表将第15、18、21层的输出(分别是80*80*256、40*40*512、20*20*1024)作为本层的输入。nc是数据集的类别数。

class Detect(nn.Module):# YOLOv8 Detect head for detection modelsdynamic = False  # force grid reconstructionexport = False  # export modeshape = Noneanchors = torch.empty(0)  # initstrides = torch.empty(0)  # initdef __init__(self, nc=80, ch=()):  # detection layersuper().__init__()self.nc = nc  # number of classesself.nl = len(ch)  # number of detection layersself.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)self.no = nc + self.reg_max * 4  # number of outputs per anchorself.stride = torch.zeros(self.nl)  # strides computed during buildc2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], self.nc)  # channelsself.cv2 = nn.ModuleList(nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()def forward(self, x):shape = x[0].shape  # BCHWfor i in range(self.nl):x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)if self.training:return xelif self.dynamic or self.shape != shape:self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))self.shape = shapeif self.export and self.format == 'edgetpu':  # FlexSplitV ops issuex_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)box = x_cat[:, :self.reg_max * 4]cls = x_cat[:, self.reg_max * 4:]else:box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.stridesy = torch.cat((dbox, cls.sigmoid()), 1)return y if self.export else (y, x)def bias_init(self):# Initialize Detect() biases, WARNING: requires stride availabilitym = self  # self.model[-1]  # Detect() module# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequencyfor a, b, s in zip(m.cv2, m.cv3, m.stride):  # froma[-1].bias.data[:] = 1.0  # boxb[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)class DFL(nn.Module):# Integral module of Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391def __init__(self, c1=16):super().__init__()self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)x = torch.arange(c1, dtype=torch.float)self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))self.c1 = c1def forward(self, x):b, c, a = x.shape  # batch, channels, anchorsreturn self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)

image.png

以上是对yolov8模型结构的一个大概的梳理,有一些模块的细节本人了解的也没有很清楚,所以就没有对全部代码进行解释。希望我的文章对你有帮助!


http://www.ppmy.cn/news/1295281.html

相关文章

鸿蒙OS:不止手机,是物联网应用开发

鸿蒙开发是华为自主研发的面向全场景的分布式操作系统,旨在将生活场景中各类终端进行整合,实现不同终端设备间的快速连接、资源共享、匹配合适设备、提供流畅的全场景体验。 鸿蒙开发具有以下特点: 面向全场景:鸿蒙系统能够覆盖…

How can I be sure that I am pulling a trusted image from docker?

1、Error response from daemon: manifest for jenkins:latest not found: manifest unknown: manifest unknown 2、Error response from daemon: pull access denied for nacos, repository does not exist or may require ‘docker login’: denied: requested access to th…

循环平稳信号分析方法在旋转机械设备状态监测和故障诊断中的应用

旋转机械设备是现代社会中不可或缺的重要组成部分,广泛应用于航空航天、汽车制造、电力系统等领域。然而,由于旋转机械设备的复杂性和工作环境的恶劣性,其运行过程中可能出现各种故障,导致设备性能下降甚至发生事故。因此&#xf…

Linux 编译安装 Nginx

目录 一、前言二、四种安装方式介绍三、本文安装方式:源码安装3.1、安装依赖库3.2、开始安装 Nginx3.3、Nginx 相关操作3.4、把 Nginx 注册成系统服务 四、结尾 一、前言 Nginx 是一款轻量级的 Web 服务器、[反向代理]服务器,由于它的内存占用少&#xf…

Docker 镜像以及镜像分层

Docker 镜像以及镜像分层 1 什么是镜像2 Docker镜像加载原理2.1 UnionFs:联合文件系统2.2 Docker镜像加载原理2.3 Docker镜像的特点 3 镜像的分层结构4 可写的容器层 1 什么是镜像 镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于运行…

JS字符串API: slice、split、JSON.stringify、trim、concat 、indexOf...

substring() 字符串的截取可以使用substring()方法和slice()方法。其中substring()方法接受两个参数,第一个参数是起始位置,第二个参数是结束位置,截取的字符串不包括结束位置的字符。 let str "Hello, World!"; let str2 &quo…

Unity中Shader面片一直面向摄像机(个性化修改及适配BRP)

文章目录 前言一、个性化修改面向摄像机效果1、把上一篇文章中求的 Z轴基向量 投影到 XoZ平面上2、其余步骤和之前的一致3、在属性面板定义一个变量,控制面片面向摄像机的类型4、效果 二、适配BRP三、最终代码 前言 在上一篇文章中,我们用Shader实现了面…

面试算法88:爬楼梯的最少成本

题目 一个数组cost的所有数字都是正数,它的第i个数字表示在一个楼梯的第i级台阶往上爬的成本,在支付了成本cost[i]之后可以从第i级台阶往上爬1级或2级。假设台阶至少有2级,既可以从第0级台阶出发,也可以从第1级台阶出发&#xff…