智能优化算法应用:基于厨师算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news/2025/3/31 12:01:54/

智能优化算法应用:基于厨师算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于厨师算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.厨师算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用厨师算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.厨师算法

厨师算法原理请参考:https://blog.csdn.net/u011835903/article/details/130534839
厨师算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

厨师算法参数如下:

%% 设定厨师优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明厨师算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码


http://www.ppmy.cn/news/1285935.html

相关文章

【js自定义鼠标样式】【js自定义鼠标动画】

文章目录 前言一、效果图二、实现步骤1. 去除原有鼠标样式2. 自定义鼠标样式3. 使用 总结 前言 自定义鼠标形状,自定义鼠标的动画,可以让我们的页面更加有设计感。 当前需求:吧鼠标自定义成一个正方形,鼠标的效果有:和…

Go语言学习第二天

Go语言数组详解 var 数组变量名 [元素数量]Type 数组变量名:数组声明及使用时的变量名。 元素数量:数组的元素数量,可以是一个表达式,但最终通过编译期计算的结果必须是整型数值,元素数量不能含有到运行时才能确认大小…

万字长文谈自动驾驶bev感知(一)

文章目录 prologuepaper listcamera bev :1. Lift, Splat, Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D2. M2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified Birds-Eye View Representation3. BEVDet: High-Pe…

使用conda在Windows上建立虚拟环境

一:介绍 Conda是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。它适用于多种语言,如Python、R、Scala、Java、Javascript、C/ C和FORTRAN。Conda安装时默认随Miniconda或…

C#中的集合

一、集合的概念 数组可以保存多个对象,但在某些情况下无法确定到底需要保存多少个对象,由于数组的长度不可变,因此数组将不再适用。 如何保存数目不确定的对象呢? 为了保存这些数目不确定的对象,C#中提供了一系列特殊…

ubuntu 安装apisix -亲测可用

官方未提供在ubuntu系统中安装apisix的方式,似乎只能通过源码方式安装,但是并不推荐,非常容易失败, 具体操作方式如下: ubuntu和Debian其实类似的,可使用DEB方式安装,如下截图 注意&#xff1…

2023年03月16日_ACM会议的一个观点总结_编程将会被终结

文章目录 威尔士的背景1 - 写代码是脏活1.1 - 计算机科学注定失败 2 - 未来的软件开发团队 最近呢在美国计算机协会 也就是ACM的一个虚拟会议上 前哈佛大学计算机教授 谷歌工程主管 马特威尔士(Matt Welsh)表示 ChatGPT和Github Copilot 预示着编程终结的开始 他断言生成…

前端性能优化 将资源放到 linux 服务器上 提升访问效率

我们先远端连接服务器 然后服务器终端输入 mkdir 目录路径建出一个新的文件路径 回到我们自己的电脑 然后 在要缓存到服务器的文件目录下打开终端 输入 scp -r ./xidis.hdr 用户名 如果没设置用户名就是root服务器公网IP:/root/xhdr例如 scp -r ./xidis.hdr root1.113.266…